
 QNX Hypervisor 2.0

PRODUCT BRIEF

Automotive

Automotive adoption
A modern vehicle has over 100 million lines of codes, running on
60 - 100+ electronic control units (ECUs). To reduce the cost of
the electronic architecture, automakers are consolidating
multiple ECUs into domain controllers. One of the most adopted
ECU consolidation examples are cockpit domain controllers,
which combine the infotainment and instrument cluster
systems to run on one ECU. The challenge of cockpit domain
controller is that it combines systems of mixed criticality, with
instrument clusters considered a safety-critical systems and
infotainment, a non-safety-critical system. The QNX Hypervisor
is a foundational element of a safe and secure domain controller
because it enables developers to partition, separate, and isolate
environments of mixed criticality to run on a single ECU. Thus
automakers can realize reductions in the cost, size, weight, and
power consumption of the system by having fewer hardware
boxes interconnected by heavy and costly copper wiring.

Best-in class technology
The QNX Hypervisor provides broad design flexibility. At one end
of the spectrum, guest operating systems (OSes) can be pinned
to certain CPU cores and given exclusive access to hardware. At
the other end of the spectrum, guest OSes can share CPU cores
and hardware devices using priority-based scheduling and
standards-based VirtIO interfaces – all with full hardware
optimization.

The core of the hypervisor runtime environment is built using
field-proven BlackBerry QNX operating system technology. This
enables developers to use trusted BlackBerry QNX services (e.g.
fast boot, splash screen display, instant device activation,
secure boot) along with the award winning graphical QNX
Momentics Tool Suite for analysis and debug.

An application running in the QNX virtualized environment has a
performance overhead typically less than 2% when compared to
the same application running in a native environment. This
extremely small overhead illustrates the e�ciency of the design
and hardware optimization support of the QNX Hypervisor. Boot
times for guests will vary but can be reduced to tens of
milliseconds.

The QNX Hypervisor supports hardware optimization on Intel
x86_64 VT-x and ARMv8 AArch64 hardware.
Hypervisor-enabled board support packages exist for
automotive reference boards such as Intel® AtomTM processor
C3000 product family, Intel® AtomTM A3900, Renesas R-Car
H3, Qualcomm® Snapdragon™ 820A, and NXP i.MX 8.

Preserve safety certifications
The QNX Hypervisor facilitates safety certifications by
separating safety-critical components from non-critical
components in separate guest OSes. Safety certifications can
be achieved on components selectively. Di�erent parts of the
system can then be updated independently without impacting
certifications. The safety-certified version of the hypervisor is
called QNX Hypervisor for Safety. It is built from a safety and
security pedigree (it complies with ISO 26262 ASIL D for
automotive safety).

Virtual CPU model
QNX Hypervisor follows a priority-based virtual CPU (vCPU)
sharing model. Each vCPU has a priority and scheduling policy,
ensuring that a higher priority guest OS will always preempt a
lower priority guest OS when sharing a physical CPU (pCPU).
Oversubscribing of vCPUs allows system designers to maximize
all cores. In addition, a vCPU may be pinned to a pCPU and
given exclusive access to that core. vCPUs can be given CPU
budgets using QNX Adaptive Partitioning. This partitioning
enforces guaranteed CPU time for a set of vCPUs even when
the system is completely busy. This flexibility of pinning and
floating of vCPUs allows the system designer to build
dependable systems without wasting hardware resources.

Figure 1: QNX Hypervisor software stack shared devices, multiple guest
OSes, integrated toolchain.

Momentics
System

Analysis and
Optimization

QNX Hypervisor

Multi-layer
Security

 InterVM
Networking

Shared Graphics

Shared Memory

Shared Audio

Adaptive
Partitioning

Staggered Boot

QNX 0S Linux Android Unmodified
OS / RTOS

Failure Handling
/Heartbeat

ARMv8 / Intel x86_64

Autosar
Runtime
Autosar

Adaptation

Broad range of guest functionality

Virtualization is rapidly becoming a critical technology in the software architecture of
modern vehicles. Cost savings via high levels of integration are driving the need for
safe and secure co-existence of multiple operating environments on the same
system-on-chip (SoC). This is accomplished by virtualization. QNX® Hypervisor is a
real-time, Type 1 hypervisor that o�ers virtualization technology that enables the
secure separation and isolation of multiple operating systems on a single compute
platform, such as a system-on-chip.

Separate SoCs/Hardware

Hypervisor microkernel scheduler:
- vCPU has priority, processor a�nity mask, and processor budget

Figure 2: Sample scenario - consolidating a QNX digital instrument cluster
(a safety certified guest OS) and a Linux OS based Infotainment system on the
same hardware (in this case a System-On-Chip with 4 cores). The QNX Safety
certified guest with 2 vCPUs is given higher priority than the Linux
Infotainment that has 4 vCPUs.

QNX

CPU 1 CPU 2 CPU 2

CPU 1

QNX

QNX Hypervisor

CPU 4CPU 3

CPU 1

CPU 2 CPU 3 CPU 4

Figure 4: Mediated sharing of a (GPU) to drive a QNX digital instrument
cluster and an Infotainment system at the same time.

Device Interaction
In embedded systems that use a hypervisor, it is desirable to
have exclusive access to certain devices while sharing other
devices among guests. Sharing provides cost savings, reduced
development time, and operational e�ciency. A guest OS can
use a mix of hardware interfaces: emulated devices such as
timers and serial ports, hardware pass-through drivers (e.g.
CAN bus drivers), and industry-standard VirtIO drivers for
sharing Ethernet and block-based filesystem devices. Guest
OSes communicate through shared memory and peer-to-peer
Ethernet connections. Guest OSes are launched, removed,
paused, and restarted on demand and managed with built-in
monitoring and failure handling services.

Shared graphics
The QNX Hypervisor provides several solutions for sharing a
graphics processing unit (GPU) among multiple guest OSes with
each solution making use of integrated hardware optimizations.

One option is to have a guest OS (usually a safety certified guest
OS) own the graphics hardware along with the hardware-accele-
ration graphics support. Other guest OSes will send draw
commands to the safety certified guest OS for rendering. The
draw stream can target a separate display or a surface on a
shared display. Another supported option involves the creation
of virtual Graphics Processing Units (vGPUs). Many guest OSes
can then use hardware-accelerated graphics commands at the
same time. Virtual GPUs are properly coordinated and fault
monitored by trusted mediation software, as shown in Figure 4.

QNX Hypervisor Features
• Type 1 Hypervisor
• Safety certification pedigree
• Virtual CPU model
• Pin to cores or share cores based on priority
• Adaptive partitioning. Allows for CPU guarantees

of guest runtime
• 64-bit and 32-bit guests: QNX, Linux, Android, RTOS
• Shared memory with triggering
• VirtIO (1.0) device sharing
• TAP and peer-to-peer networking with bridging
• Failure detection and restart of guests
• Virtual watchdog for guest integrity checking
• Low overhead (typical < 2%)
• Graphical tools for analysis and debug

Figure 3: Example scenario depicting virtualization of a safety component (digital
instrument cluster) and a non-safety component (infotainment). Services include
shared memory, Ethernet, and VirtIO.

Block
Storage
 VirtIO

Ethernet
VirtIO

Serial Port

IRQ, Timer

Shmem

Ethernet Driver

Block Driver
e.g. eMMC, SATA

VM
Control

Block
Storage
 VirtIO

Ethernet
VirtIO

VM Monitor

PCIe

IRQ, Timer

Shmem

Guest Driver:
hardware

pass-through

Zero-copy +
triggering

Single-copy peer-to-peer TCP network

Hardware (Intel x86_64 VT-x / ARMv8 AArch64)

Hypervisor microkernel

Safety Guest:
Instrument Cluster

Non-Safety Guest:
Infotainment / Navigation

Virtual
GPU

Hardware
GPU

Virtual
GPU

Mediation
Control Hypervisor

microkernel

First Guest:
Instrument
Cluster

Second Guest
Infotainment /
Navigation
QNX / Linux

Integration with QNX Momentics®
The QNX Hypervisor is integrated with the QNX Momentics Tool
Suite, enabling developers to see and capture system-wide
events such as interrupts, context switches, and shared
interfaces between virtual machines. This greatly improves
integration and debugging capabilities for virtualized platforms
and cannot be done using typical debuggers, which are only
aware of a single operating system.

About BlackBerry QNX

 BlackBerry QNX, is a leading supplier of safe, secure, and trusted operating systems,
development tools, and professional services for connected embedded systems. Global
leaders such as Ford, Audi, Cisco, General Electric, Lockheed Martin, and Siemens
depend on BlackBerry QNX technologies for their next generation of secure vehicle
software platforms, network routers, medical devices, industrial automation systems,
security and defense systems, and other mission and/or life-critical applications. This
includes full software lifecycle management via secure over the air software updates.
Founded in 1980, BlackBerry QNX is headquartered in Ottawa, Canada, with its
products distributed in over 100 countries worldwide.

© 2018 BlackBerry QNX, a subsidiary of BlackBerry. All rights
reserved. QNX, Neutrino, are trademarks of BlackBerry Limited, which are
registered and/or used in certain jurisdictions, and used under license by
BlackBerry QNX. All other trademarks belong to their respective owners.

