

Memory Errors in Embedded Systems:
Analysis, Prevention, and Risk Reduction
Elena Laskavaia and Paul Leroux
QNX Software Systems
elaskavaia@qnx.com, paull@qnx.com

Abstract
Memory errors are particularly harmful in embedded
systems. These systems have limited memory
resources, and are often deployed in environments
where there are no second chances: a system brought
down by a memory error that appears weeks or
months after deployment may be unrecoverable and
have costly or even disastrous consequences.

To address the challenges presented by memory
errors, developers can take advantage of tools for
memory analysis and debugging, and OS architectures
that minimize the impact of memory errors on the
system. This paper discusses memory analysis
techniques for solving memory problems such as heap
corruption and memory leaks; and memory profiling
for optimization of memory use in embedded systems.

Introduction
Have you ever had a customer say, “It was working fine
for days, then suddenly it just crashed”? If you are a
developer, it is unlikely that you haven’t heard this,
just as it is likely that the it in question was your
program, and that your program contained a memory
error — somewhere. The problem was, and remains:
where?

In fact, most developers find memory errors and leaks
hard to detect and isolate, and therefore difficult to
correct. The problem they face is that, by the time a

memory problem appears (often by crashing the
program), the corruption has usually become
widespread, making the source of the problem difficult
— though not impossible — to trace1. The inherent
difficulty of pinpointing the source of a memory error is
compounded in a multi-threaded environment, where
threads share the same memory address space.

Memory errors in embedded systems
If eliminating memory errors and optimizing memory
allocation is important in all software systems, it is
doubly so in an embedded system.

First, memory is a precious commodity in embedded
systems; it must be managed efficiently as well as
reliably. Less than optimal memory allocation can
waste precious RAM and hinder performance. Projects
with inefficient memory allocation may be forced to
remove useful software features, add more RAM, or
upgrade to a faster processor, all solutions that reduce
the value of the project or increase its cost. Inversely,
efficient memory allocation can help maximize
software functionality while minimizing hardware
costs.

Second, embedded systems are often deployed in
environments where recovery strategies may be

1 We are not discussing Heisenbugs, which by definition are not

reproducible, but, strictly, memory errors, which are difficult to
trace. For a discussion of Heisenbugs, see Chris Hobbs,
“Protecting Applications Against Heisenbugs”. QNX Software
Systems, 2010. www.qnx.com.

QNX Software Systems Memory Errors in Embedded Systems

2

difficult or impossible to implement. With their
propensity for showing up long after a system appears
to be running reliably, memory errors are particularly
insidious in these environments. One only needs to
consider the failure of the Mars Global Orbiter in
January 2007, which John McNamee, NASA deputy
program manager for Mars Exploration at the Jet
Propulsion Laboratory, attributed to a memory error:
“two memory addresses were overwritten”2; or the
New Horizons mission to Pluto and the Kuiper Belt,
which was saved only by “an amazing stroke of luck”
when it encountered an “uncorrectable memory
error”3.

Addressing the challenge
To address the challenges presented by memory
errors in embedded systems, developers can use a
suite of tools for memory analysis and debugging, and
an RTOS architecture that minimizes the impact of
memory errors on the system.

Tools
Memory analysis tools enable developers to quickly
detect and pinpoint the source of memory errors such
as leaks, buffer overruns, invalid deallocations and
double frees. Just as importantly, these tools can
expose subtle, long-term allocation problems that
waste RAM and, in many cases, cause the system to
fail weeks or even months after being deployed.
Ideally, these tools work in an extensible environment
such as Eclipse, which allows a memory analysis tool to
share information with source code editors, debuggers,
and other diagnostic tools, providing smoother
workflow and faster error isolation of errors.

2 Clinton Parks, “Faulty Software May Have Doomed Mars

Orbiter”, Space News (10 January 2007), www.space.com.
3 Alan Stern, “NASA New Horizons Mission: The PI’s Perspective:

Trip Report”, PlutoToday.com (26 March 2007),
www.plutotoday.com

Memory errors
Memory errors are many and varied; they range from
buffer under- and overruns, to multiple frees of the
same memory block, to slow leaks. They can be
classed, however, into two broad categories: heap
corruption and memory leaks. Careful and thorough
memory analysis is the most effective strategy for
detecting and resolving both categories of error, as
well as for optimizing memory use.

Heap corruption
To dynamically request memory buffers or blocks in a
POSIX-based runtime environment, developers
typically use the malloc(), realloc(), or calloc()
function calls. To release these resources once they
are no longer required, developers use free(). The
system’s memory allocator satisfies these requests by
managing an area of program memory called the
heap.

A program can erroneously or maliciously damage the
memory allocator’s view of the heap, resulting in heap
corruption. For example, this corruption can occur if a
program tries to free the same memory twice, or if it
uses a stale or invalid pointer.

These silent errors can cause surprising, apparently
random application crashes. The source of the error
often proves extremely difficult to find, since the
incorrect operation may have been executed in a
different section of code long before the crash actually
occurred.

Causes of heap corruption
Heap corruption has multiple causes. For example, it
can occur when a program:

• passes an incorrect argument to a memory
allocation function

• writes before the start of the allocated block
(underrun error)

Memory Errors in Embedded Systems QNX Software Systems

3

• writes past the end of the allocated block (overrun
error)

• passes invalid information, such as a stale or
uninitialized pointer, to a free() call

The outcome of these errors can depend on several
factors, making diagnosis difficult with conventional
debug tools. Consider memory overruns and
underruns, which are among the most elusive and fatal
forms of heap corruption. In an overrun error, the
program writes past the end of the allocated block.
Frequently, this overrun causes corruption in the next
contiguous block in the heap. When this corruption
occurs, the behavior observed depends on whether
that block is allocated or free, and whether it is
associated with a part of the program related to the
error.

For instance, when an unallocated block becomes
corrupted, a fatal error will usually occur during a
subsequent allocation request. While the error might
occur during the next allocation request, the actual
observed outcome depends on a complex set of
conditions that could result in a fault at a much later

point in time, in a completely unrelated section of the
program.

Detecting sources of heap corruption
Conventional debugging techniques rarely locate the
cause of a memory error, because these errors can
occur in one area of the code base but manifest
themselves in another. In a multithreaded application,
for example, a thread that corrupts the heap can
cause a different thread to fault.

This phenomenon occurs because threads interleave
requests to allocate or release memory. Conventional
debugging typically applies breakpoints — such as
stopping the program from executing — to narrow
down the search for the offending section of code.
While this approach may work for single-threaded
programs, it is often ineffective for multi-threaded
execution, because the fault may occur at a difficult-
to-predict point.

There are multiple scenarios in which an error can
occur in one area, while manifesting itself in another.
For instance, the problem can happen when:

Figure 1: Using an error report to locate memory leaks.

QNX Software Systems Memory Errors in Embedded Systems

4

• a program attempts to free memory

• a program attempts to allocate memory after it has
been freed

• the heap is corrupted long before the release of a
block of memory

• the fault occurs on a subsequent block of memory

• contiguous memory blocks are used

These problems all point to the importance of using
effective memory analysis tools.

Memory leaks
Memory leaks occur when a program allocates
memory, then forgets to free it later. In its mildest
form, a memory leak allows the program to consume
more memory than it actually needs. While wasteful,
the leak may pose little danger if the program
terminates occasionally; most modern OSs recover the
memory (including lost memory)from terminated
processes. However, if the program has a severe leak,
or if it leaks slowly but never terminates—as may be
required in an embedded system—the leak can
ultimately consume all memory and cause system
failure.

Programs can also use memory inefficiently. For
instance, a program may allocate memory for a large
data structure or continually grow a dynamic data
structure, then fail to use the structure for a long
period of time. Though, strictly speaking, this behavior
does not constitute a memory leak, it can waste a
significant amount of memory
nonetheless, and can severely
impact system performance.

Detecting memory leaks
A good memory analysis tool can
report a memory leak in the same
way that it reports other memory
errors. Figure 1 above shows how

the analysis tool from the QNX® Momentics® Tool
Suite’s Intergrated Development Environment (IDE)
displays several leaks. As with other types of memory
errors, the developer can click on any reported leak to
get a backtrace to the associated source code.

Memory analysis
Memory analysis consists of capturing memory-related
events on the embedded target, importing that
information into the development environment, then
using visualization tools to pinpoint errors and to identify
areas that need correction or optimization.

Memory analysis workflow
Memory analysis not only lets developers find errors, but
it also helps them fine-tune allocations to minimize RAM
usage and ensure long-term system stability. Figure 2
illustrates the process of memory analysis, starting with
observation and concluding with optimization. A well-
designed memory analysis tool will provide robust
support for each step of the memory analysis process:

Observe — First, the tool catches runtime errors,
detects memory leaks, and displays all memory
allocations and deallocations.

Correct — Next, the tool allows the developer to trace
each error back to the offending source line.

Profile — Having eliminated obvious memory errors
and leaks, the developer can now analyze memory
usage over time, including average usage, peak usage,

Figure 2: A typical memory analysis workflow.

Memory Errors in Embedded Systems QNX Software Systems

5

and overhead. Ideally, this tool will provide a visual
presentation of longer-term memory usage, allowing
immediate identification of spikes in memory
allocation and other anomalies.

Optimize — Finally, using the tool’s profiling
information, the developer can fine-tune each
program’s memory usage to take best advantage of
the system’s memory allocation algorithm. Among
other things, this optimization can minimize peak
memory usage and overhead, lower RAM costs, and
prevent the system from slowly running out of memory.

Observe and correct: the debug library
A memory analysis tool typically works in concert with
a debug version of the memory allocation library to
catch memory errors. This library, which is dynamically
loaded at runtime, allows the tool to report overruns,
underruns, double frees, and other errors, without
requiring any modifications to the application source
code.

To catch errors, the debug library records all memory
allocations and deallocations — malloc(), calloc(),
free(), new(), delete(), etc. — and performs a sanity
check on their pointer values. It also intercepts string-
and memory-related functions — strcmp(), memcpy(),
memmove(), etc. — and verifies their parameters

before using them. If the
library detects an invalid
pointer or incorrect
parameter, it records the
error and reports it to the
IDE, making the inform-
ation available to the
memory analysis tool.

For example, if a
program allocates 16
bytes of memory but
forgets the terminating
NUL character, then

uses strcpy() to copy a 16-byte string into the block,
the library will report the error to the IDE. The error
message can indicate the point at which the error was
detected, the program location that made the request,
and information about the heap buffer that contained
the problem.

As well as recording memory allocations and
deallocations, a memory analysis tool should offer
developers the option of recording a memory-analysis
session, which they can play back at any time for
analysis.

Using a debug library
Using a debug library should be straightforward. For
instance, the QNX Momentics Tool Suite supports the
creation of a launch configuration that automatically
uses the debug library when it starts a specified
application.

To illustrate how the debug library works, let’s say a
process allocates a string of ten bytes, then attempts
to copy eleven bytes of string data into that memory
space. In response, the debug memory allocation
library would intercept the malloc() call, the two
strcpy() calls, and the free() call; see Figure 3.

In this case, the library sees a mismatch between the
parameter for str, which is allocated ten bytes, and

Figure 3: Memory analysis works by trapping memory-related API calls.

QNX Software Systems Memory Errors in Embedded Systems

6

the other parameter,
which is a string of eleven
bytes. It also detects that
in the case of the free(),
the buffer referenced by
str is now being
corrupted, and that the
free() call will therefore
probably fail as well.

Figure 4 provides a closer
look at what the IDE would
show. At the top is a list of
errors; below it is a back-
trace view that shows a
call stack of the steps in
the code that led to the error. A click on an error
provides a backtrace, and a click on the backtrace
shows the associated source code, displayed in the
source-code editor. From there, it becomes a relatively
simple matter to correct the problem, do a rebuild and,
using the memory analysis tool, confirm that the
memory error no longer occurs.

IDE support for error tracking
A well-designed IDE will provide several options for
dealing with errors. For instance, the QNX Momentics
Tool Suite intelligently tracks each memory error as a
task and automatically annotates the program source
code with a warning. When the IDE detects a memory
error, it lets the developer:

• let the program continue uninterrupted

OR

• stop the program and immediately switch control
to the debugger view, where the developer can
use the debugger features to pinpoint the problem

OR

• terminate the program and generate a process
core dump file for postmortem analysis.

Pointer checking — Mudflap
Pointer errors are a common source of heap
corruption, and they can be difficult and time-
consuming to correct. Mudflap in the development
environment can significantly reduce the effort
required to chase down pointer errors.

Figure 5: A screenshot from the QNX Momentics Tool Suite’s
Mudflap module.

Mudflap provides runtime pointer checking capability
to the GNU C/C++ compiler. Since Mudflap is included
with the compiler, it does not require additional tools in

Figure 4: Using the error report to locate the offending source line.

Memory Errors in Embedded Systems QNX Software Systems

7

the tool chain, and it
can be easily added to a
build by specifying the
necessary GCC options.

Mudflap instruments
risky pointer and array
de-referencing
operations, some
standard library
string/heap functions,
and some other
associated constructs
with range and validity
tests. Instrumented
modules detect buffer
overflows, invalid heap
use, and some other classes of C/C++ programming
errors.

In the QNX Momentics Tool Suite, the instrumentation
relies on a separate runtime library, which is linked
into a program when the compile and linker options
are provided for the build.

Postmortem debugging
If, for any reason, the above methods fail to trap the
error and the program terminates abnormally, a
background “dumper” utility can write a core dump of
the program’s state to the host file system. This dump
file, viewable with source debugging tools, provides
the information needed to identify the source line that
caused the problem, along with a history of function
calls, contents of data items, and other diagnostic
information. The developer can then debug the dump
file just as he would debug an application on the target
system, stepping through call stacks to determine
what events led to the crash.

Memory profiling
After eliminating obvious memory errors with the help
of a memory analysis tool, developers should have a
stable system which they can begin optimizing through
memory profiling. Profiling is often done during a
project’s integration phase, when it becomes
important to gauge how the system consumes memory
over time.

Important measurements to make include peak
memory usage; distribution of allocation sizes (16
bytes, 32 bytes, etc.); long-term trends in memory
usage (for instance, does allocated memory slowly
grow over time?); and overhead associated with how a
program allocates memory.

Memory use by process
When optimizing memory usage, it is important to
know how much memory individual processes use.
First, if a process uses only a small portion of available
memory — five percent, for instance — optimization of
that process is unlikely to produce noticeable

Figure 6: A post mortem debug session.

QNX Software Systems Memory Errors in Embedded Systems

8

improvements. Second,
techniques for optimizing
different types of memory can
differ significantly.

Memory wastage
The manners by which a
program can waste memory
are manifold:

Linked lists of large data
items — Linked lists or
variable data structures are
convenient to use, but can be
very unpredictable.

An application may add or
remove objects from a linked
list of large data items, for
example, and the length of that
list may vary because of
application load or throughput.

Data packet copy and
forward — Programs “copy
and forward” for a variety of
purposes. For instance, a
packet processing system may
copy and forward every time it
handles a packet, and it may
issue a malloc() call (or, in C++,
a new operator) for every copy.

Many class constructions —
Objects and object-oriented
programming are very
convenient, but they can
potentially waste memory,
especially when classes
contain large data structures. Every time a program
creates one of these structures, it allocates a certain
amount of memory.

In some cases, the program frees this memory
inefficiently. In other cases, the program may continue
allocating memory for a long time, then free a large

Figure 7: Using an error report to locate memory leaks.

Figure 8: A profile session that shows growing memory usage over time (blue line).

Memory Errors in Embedded Systems QNX Software Systems

9

amount of memory all at once, rather
than freeing allocated blocks as soon
as they are no longer required. In still
other cases, this memory may remain
allocated indefinitely, even though the
application is not using the data
structure.

Diagnosing memory wastage
To help diagnose conditions of memory
wastage, a memory profiling tool must monitor all the
allocations and deallocations performed by the
system. It should also keep a log of all allocations and
match these with all the deallocations. This information
permits the developer to go back and trace where
memory is being used, which components are
allocating it, and which components are freeing it.

Figure 10: Distribution of memory allocations over time.

For example, consider the memory profile in Figure 8,
generated by the QNX Momentics memory analysis
tool. Using this profile, it is a simple matter to identify
peak memory usage, average usage, and, importantly,

any anomalies in how the application uses memory.
Note how the timeline graph at the bottom of the
screen shows that memory allocation (ascending blue
line) is growing over time, indicating potential memory
mismanagement or a possible memory leak.

Memory overhead
To avoid memory fragmentation and ensure
deterministic response, most RTOSs use a memory-
allocation scheme that divides the available heap
space into smaller, fixed-size blocks. The memory
allocator then distributes every allocation request
among these blocks. To use memory efficiently, a
developer must ensure that most allocation requests
conform to these predetermined block sizes;
otherwise, excessive memory overhead can result.

For example, in Figure 9, the memory allocator has
divided the heap into various fixed-sized blocks: four
16-byte blocks, two 24-byte blocks, two 48-byte
blocks, and so on. If an application does a malloc() of
114 bytes, it has to grab 24 bytes, 48 bytes, and
another 48 bytes, for a total of 120 bytes. The
difference between the total block size and the
memory requested (120-114=6) yields an overhead of
roughly five percent. In other words, five percent of the
memory allocated goes to waste. This number is not
huge, but the more such calls the program makes, the
more that the memory overhead will grow.

Figure 9: Overhead incurred by a mismatch between a malloc() call and the
memory allocation scheme.

QNX Software Systems Memory Errors in Embedded Systems

10

To help avoid this problem, a memory analysis tool
must let the developer compare allocation requests
with the memory allocator’s predetermined block
sizes. With this information, he can quickly tune and
optimize memory allocation on a per-application basis.

Figure 11: Comparison of the pattern of allocation requests
with block sizes used by the memory allocation scheme.

To begin with, the memory analysis tool can display a
distribution of memory allocations. For example, in
Figure 10, the memory analysis tool displays two
views:

Bin Statistics — The distribution of allocation
requests. The peak indicates that the program
frequently makes allocation requests of 1024 bytes.

Use Bins — How often the program has requested
particular bin sizes over time. For example, the brown
steps indicate multiple allocations of 1024 bytes and
the green steps indicate multiple allocations of 16
bytes.

In Figure 11, the memory analysis tool displays bands, or
block sizes. The block sizes in Figure 9 are 16, 24, 48,
and 64, and that is close to what we see here. The Bands
Allocation display at the top of the screen overlays what

the program asked for with the bands (block sizes) used
by the memory allocation algorithm. Using this graph, it
is easy to determine whether a mismatch exists between
the most commonly requested memory size and the
block sizes used by the memory allocation scheme.

RTOS architectures
A discussion of RTOS architecture may seem out of
place in a discussion of memory analysis tools. But as it
turns out, a well-designed RTOS can make many
memory problems much easier to isolate and resolve.
To illustrate, let’s look at the three most common
RTOS architectures: realtime executive, monolithic,
and microkernel.

Realtime executive architecture
The realtime executive model is now 50 years old, yet
still forms the basis of many RTOSs. In this model, all
software components — OS kernel, networking stacks,
file systems, drivers, applications — run together in a
single memory address space.

Figure 12: In a realtime executive, any software module can
cause system-wide failure.

While efficient, this architecture has two immediate
drawbacks. First, a single pointer error in any module,
no matter how trivial, can corrupt memory used by the
OS kernel or any other module, leading to
unpredictable behavior or system-wide failure.
Second, the system can crash without leaving

Memory Errors in Embedded Systems QNX Software Systems

11

diagnostic information that could help pinpoint the
location of the bug.

Monolithic architecture
Some RTOSs, as well as Linux, attempt to address the
problem of a memory error provoking a system-wide
corruption by using a monolithic architecture, in which
user applications run as memory-protected processes.

Figure 13: In a monolithic OS, the kernel is protected from
errant user code, but can still be corrupted by faults in any
driver, file system, or networking stack.

This architecture, shown in Figure 13, does protect the
kernel from errant user code. However, kernel
components still share the same address space as file
systems, protocol stacks, and drivers.

Consequently, a single programming error in any of
those services can cause the entire system to crash.
As with a realtime executive, where do you assign the
blame? Where do you look? Is the problem a memory
error or some other type of error? Unfortunately, there
is often no easy way to find the answer.

Microkernel architecture
In a microkernel RTOS, applications, device drivers,
file systems, and networking stacks all reside outside
of the kernel in separate address spaces, and are thus
isolated from both the kernel and each other. This

approach offers superior fault containment: a fault in
one component will not bring down the entire system.

Moreover, it is a simple matter to isolate a memory or
logic error down to the component that caused it. For
instance, if a device driver attempts to access memory
outside its process container, the OS can identify the
process responsible, indicate the location of the fault,
and create a process dump file that is viewable with
source-level debugging tools.

Meanwhile, the rest of the system can continue to run,
allowing developers to isolate the problem and direct
their efforts towards resolving it.

Compared to conventional OS kernels, a microkernel
also provides a dramatically faster Mean Time to
Repair (MTTR). Consider what happens if a device
driver faults: the OS can terminate the driver, reclaim
the resources the driver was using, and then restart
the driver, often within a few milliseconds. With
conventional operating systems, recovery would
require a device reboot — a process that can take
seconds to minutes.

Figure 14: In a microkernel OS, memory faults in drivers,
protocol stacks, and other services cannot corrupt other
processes or the kernel. Moreover, the OS can automatically
restart any failed component, without need for a system
reboot.

QNX Software Systems Memory Errors in Embedded Systems

12

Conclusion
The software in embedded systems is becoming very
complex, making it harder than ever to pinpoint and
stamp out memory errors. Memory analysis allows
developers to visually pinpoint memory errors that
conventional source debuggers are unable to detect.
They can also help optimize long-term memory usage,
thereby reducing RAM requirements and ensuring that
the system does not run out of memory days, weeks, or
months after deployment.

Developers and project implementers should not wait
for a memory error to manifest itself before they decide
to use a memory analysis tool. Even if a system
appears to perform acceptably, a memory analysis tool
can not only reveal latent memory errors early, when
they are easier to correct, but they can also uncover
hidden inefficiencies that, when corrected, allow for
substantial improvements in performance and
memory usage.

References
“Heap Analysis: Making Memory Errors a Thing of the Past”,
QNX Neutrino RTOS Programmer’s Guide.

Hobbs, Chris. “Protecting Applications Against Heisenbugs”.
QNX Software Systems, 2010. www.qnx.com.

Laskavaia, Elena. “Memory Profiling Using the QNX IDE 4”.
QNX Software Systems, 2007. www.qnx.com.

Parks, Clinton. “Faulty Software May Have Doomed Mars
Orbiter”. Space News (10 January 2007). www.space.com.

Stern, Alan. “NASA New Horizons Mission: The PI’s
Perspective: Trip Report”. PlutoToday.com (26 March 2007)
www.plutotoday.com.

About QNX Software Systems
QNX Software Systems is the leading global provider of innovative embedded technologies, including middleware, development

tools, and operating systems. The component-based architectures of the QNX® Neutrino® RTOS, QNX Momentics® Tool Suite, and

QNX Aviage® middleware family together provide the industry’s most reliable and scalable framework for building high-

performance embedded systems. Global leaders such as Cisco, Daimler, General Electric, Lockheed Martin, and Siemens depend

on QNX technology for vehicle telematics and infotainment systems, industrial robotics, network routers, medical instruments,

security and defense systems, and other mission- or life-critical applications. The company is headquartered in Ottawa, Canada,

and distributes products in over 100 countries worldwide.

www.qnx.com
© 2010 QNX Software Systems GmbH & Co. KG, a subsidiary of Research In Motion Limited. All rights reserved. QNX, Momentics, Neutrino, Aviage,

Photon and Photon microGUI are trademarks of QNX Software Systems GmbH & Co. KG, which are registered trademarks and/or used in certain

jurisdictions, and are used under license by QNX Software Systems Co. All other trademarks belong to their respective owners. 302149 MC411.77

