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Abstract 

In a conventional network, devices can share files 
and data with relative ease. Imagine, however, if any 
device in a network could, without complex software 
programming, access the hardware resources—
Flash memory, Internet connection, graphics chip, 
and so on—of any other device as easily as devices 
now share data. Such is the promise of transparent 
distributed processing. 

In this paper we briefly introduce QNX transparent 
distributed processing, and explain how this 
technology can be used to connect disparate 
interconnected devices into a single logical 
computer. We present some examples of how 
transparent distributed processing can be used to 
meet design requirements ranging from reducing 
hardware component counts to building fault-

tolerant systems that can harness the computing 
power of hundreds of processors. 

What Is Transparent Distributed 
Processing? 

The principle behind transparent distributed 
processing is simple: to merge all interconnected 
devices into a single logical computer, where 
applications can use just one simple programming 
interface to access both local and remote resources. 
If an application needs to access, say, a hard disk, it 
can do so without knowing whether that disk is 
located on the local device or on another, network-
connected device.  

 

Figure 1. QNX message passing integrates a network of individual devices into a single logical machine. An application 
running on one node can access the resources of any other node, without special software programming. 
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Using this capability, we can easily create both low-
cost and high-cost variants of a platform. In a car, 
for instance, we could deploy a lower-cost platform 
with a single CPU shared by an instrument cluster 
and an infotainment system, or a higher-cost 
platform that takes advantage of two separate CPUs. 
Both the single-and dual-CPU variants would use 
exactly same software load. 

In fact, system designers can leverage the location 
transparency provided by transparent distributed 
processing to achieve any number of design goals, 
from reducing hardware component counts to 
achieving fault tolerance to building scalable 
systems that harness the power of hundreds of 
multicore processors.  

Fault-tolerant systems 

Besides eliminating unnecessary hardware, the 
location transparency provided by QNX distributed 
processing can also simplify the design of fault-
tolerant, load-balancing systems. For instance, let’s 
say a machine provides compute services for client 
applications throughout a network. What happens if 
that machine fails and a backup machine, serving 
as a “hot standby,” has to take over? With QNX 
distributed processing, the client applications don’t 
have to be informed that a new machine is now 
handling their requests, nor do they require special 
programming to locate the new machine. Any 
messages they send can be automatically routed to 
the new destination. 

  QQNNXX  wwiitthh  QQnneett   LLiinnuuxx  

CCoommppii llee  tt iimmee  1. Nothing: shared .h file used for devctl() 
definition. 

1. Define function using Interface Definition 
Language 

2. Create/generate Proxy (local end that 
accepts function call). 

3. Create/generate Stub (remote end that 
executes function call).  

RRuunn  ttiimmee    
(( llooccaall::   ccaallll ))   

    

IInnii ttiiaall ii zzaatt iioonn  1. Open file as per normal. 1. Create and bind socket 

MMaakkee  aa  ccaall ll  1. Normal read()/write()/devctl() calls; QNX 
takes care of proxying message to remote 
end 

1. Call Proxy function 
2. Marshall arguments (i.e. expand them into 

network-consumable form) 
3. Send to remote end over socket 
4. Block on reply 
5. Unmarshall return arguments (i.e. convert 

from network form to programmatic) 
6. Return to caller 

RRuunn  ttiimmee  ((rreemmoottee::   
rreecceeiivvee))  

  

IInnii ttiiaall ii zzaatt iioonn 1. Standard resmgr setup 1. Create and bind socket 
2. Create listener  

RReecceeiivvee  aa  ccaallll  1. Respond as per normal to 
read()/write()/devctl() calls; QNX takes 
care of returning results to caller 

1. Block on input 
2. Unmarshall function arguments 
3. Call stub function to execute, passing 

arguments 
4. Marshall return value and return args 
5. Send back as response 
6. Go back to block on input 

Table 1. Comparison of a simple remote procedure call using QNX with Qnet and using another OS, such as Linux, 
assuming TCP/IP is used. 
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Distributed message passing 

We’ve discussed what QNX distributed processing 
can do—but how, exactly, does it work? The answer 
can be found in the microkernel architecture of the 
QNX® Neutrino® RTOS, which provides the 
foundation for this unique networking technology. 

In a conventional operating system (OS), most 
system services—device drivers, file systems, 
protocol stacks, and so on—run in the OS kernel. 
Any application that needs to access those services 
must, as a result, invoke kernel calls. Unfortunately, 
kernel calls don’t cross processor boundaries; they 
can only invoke services running on the local CPU. It 
thus becomes difficult, if not impossible, for an 
application to access system services located on 
another device. 

By implementing a microkernel architecture, the 
QNX Neutrino RTOS offers a way out of this 
dilemma. In a microkernel OS, only the most 
fundamental OS primitives (e.g. threads, mutexes, 
timers) run in the kernel itself. All other services, 
including drivers, file systems, and protocol stacks, 
run outside of the kernel as separate, memory-
protected processes.  

Since these services don’t run in the kernel, they 
don’t have to be accessed by kernel calls. Rather, 
applications can access the services via message 
passing, a form of IPC that, when properly 
implemented, can flow transparently across 
processor boundaries. An application can, therefore, 
access virtually any remote service on any node, 
simply by sending it appropriate messages. In fact, 
the application can send the exact same messages 
regardless of whether the service is local or remote.  

This message-passing model has another benefit: it 
forms a virtual “software bus” that allows any service 
or application to be started or stopped dynamically. 
Drivers, protocol stacks, and file systems can all be 
upgraded or restarted, without rebooting the entire 
system. 

Note that Qnet is not the only generic method for 
making remote function calls. Other methods 
include CORBA (Unix), which according to some is 
diffcult to use and hence prone to poor 
implementation, and ActiveX/DCOM (Windows), 
which Microsoft proposed as an alternate technology 
to CORBA, but which it was never able to scale 
sufficiently well to make generally useful1. 

Industry-standard POSIX interfaces 

Message passing provides the foundation on which 
QNX distributed processing is built. However, there 
is no need for developers to learn a complex 
messaging protocol. Unlike with NFS (Network File 
System), SMB (Server Message Block) or a 
client/server approach, an application does not need 
to know anything about the protocols of the nodes 
where it needs to access services, as long as these 
nodes are running QNX with Qnet. To exchange 
messages with remote services, a client application 
can simply use industry-standard POSIX function 
calls. Using symbolic links to redirect a resource to 
the appropriate node further simplifies application 
development. 

Let’s examine how this works. In the QNX Neutrino 
RTOS, any service-providing program (a device 
driver, for instance) can adopt a portion of the 
pathname space. Any application can then access 
that driver by issuing a POSIX open() call on the 
pathname. The application will receive a file 
descriptor in return, at which point it can begin 
issuing POSIX file-descriptor calls—such as read(), 
write(), and lseek()—to access the driver’s services. 
To read some incoming data, for instance, an 
application would issue a read() call, and the 
underlying C library would transparently convert the 
call into the appropriate read message.  

                                                        
1 See, for example, Michi Henning, “The Rise and Fall of 

CORBA”, acmqueue, Association for Machine 
Computing, 1 June 2006. 
<http://queue.acm.org/detail.cfm?id=1142044> 

 

Figure 2. With transparent distributed processing, messages are passed to services indifferently of CPU location. 
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For instance, Figure 1 shows two processes that 
need to communicate with each other: in a 
hypothetical medical device with the HMI, including 
diagnostic displays and alarm controls, on Node 1 
and pump control and monitoring on Node 2. If both 
processes were running on the same device, the 
client could invoke the following open() call, and the 
OS would establish a connection between the two 
processes: 

/*Open a Flash file system */ 
fd = open("/dev/fs1",O_RDWR...); 

In our case, however, the power-safe filesystem is on 
another device. Consequently, the client could issue 
the following code instead: 

/* Open a power-safe file system 
   on node 2*/ 
fd = open("/net/node2/dev/fs1",O_RDWR...);  

As you see, the code is identical to the code used in 
the single-node scenario, with one exception: the 
pathname now contains a prefix that specifies the 
node where the service resides.  

Once an application issues a message, one of two 
things will happen. If the system service receiving 
the message is on the local processor, the OS 
microkernel will route the message directly to the 
service. But if the service resides on another node, 
then a network manager—an OS process dedicated 
to forwarding and receiving remote messages—will 
send the message to that node. A network manager 
on the second node will then receive the message 
and forward it to the appropriate process (in this 
case, the power-safe filesystem). The flowchart in 
Figure 2 illustrates this sequence of operations.  

In addition to using POSIX calls such as open(), 
read(), and write(), developers can also choose to 
access the messaging framework directly, using 
three simple calls: MsgSend(), MsgReceive(), and 
MsgReply(). 

Location transparency though GNS 

In the example above, the client application “knows” 
where the Flash file system is located (Node 2) and 
uses a pathname to access the service. However, 
QNX distributed processing also provides a global 
name service (GNS) that makes the location of 
system services fully transparent to client 
applications. 

With GNS enabled, an application uses an arbitrary 
name, rather than a static pathname, to access a 
service. For example, if an application needed to 
locate a modem on the network, it could simply 
specify the name “modem.” The GNS server would 
then locate the modem service on behalf of the 
application, and the application could then use that 
service, without knowing where the service was 
located. 

The GNS server is especially useful for networks 
whose configuration may change at any time. For 
instance, a system service can be dynamically 
moved from one node to another, without affecting 
any of the client applications that communicate with 
that service. 

Redundant links for fault tolerance  

To achieve load balancing or fault tolerance, many 
systems use a cluster architecture that distributes 
applications and services across multiple networked 
nodes. These nodes can be several machines 
connected by a LAN or multiple CPU cards connected 
to a backplane. If one node fails or becomes 
inundated with too many requests, other nodes can 
take over that node’s duties until it recovers. Still, the 
act of distributing applications across multiple nodes 
can itself create a potential point of failure; namely, 
the network that connects the nodes together. If any 
portion of the network fails for any reason, then 
services can become unavailable. Hence the need for 

 

Figure 3. Network managers handle the “dirty work” of forwarding messages to remote nodes. 
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redundant network links 
between nodes—and for a 
software architecture that 
allows those links to be 
implemented easily. 

To address this need, the 
network managers that 
implement QNX 
distributed processing 
offer inherent support for 
multiple links. Moreover, 
the managers support 
several Quality of Service 
(QoS) policies that let 
system designers control 
how and when traffic will 
flow across each link. The 
QoS policies, illustrated in 
Figure 4, include:  

LLooaadd--bbaallaanncciinngg — 
Queue packets on the 
link that will deliver 
them the fastest, 
based on current load and link capacity. When 
this policy is in effect, the combined service of 
all links is used to maximize throughput and 
allows service to degrade gracefully if any link 
becomes unavailable. Once a failed link 
recovers, it can automatically resume sharing 
the workload. 

PPrreeffeerrrreedd — Send out all packets over a specific 
link until it becomes unavailable, at which point 
use the second (or third or fourth) link. Qnet will 
automatically reroute traffic back to the 
preferred link once it has rejoined the pool of 
available links.  

EExxcclluussiivvee — Only use the specified link. If the link 
fails, no other link will be used.  

Why would you use the exclusive policy? Suppose 
you have two networks, one much faster than the 
other, and you have an application that moves large 
amounts of data. By using the exclusive policy, you 
can restrict transmissions to only the fast network 
and avoid swamping the slow network if the fast one 
fails. 

Reliable delivery  

To further enhance network reliability, QNX 
distributed processing supports the following 
features: 

 fragmentation and reassembly  

 breakdown of messages into packets within the 
limits of the packet interface  

 assembly of incoming packets into complete 
messages  

 guaranteed delivery of messages and receipt of 
responses on unreliable packet interfaces  

Developers can also incorporate standards-based 
resolver functionality, including DNS, to route traffic 
to remote nodes. 

Transport independence   

By default, QNX distributed processing supports 
both Ethernet and the Internet Protocol (IP). It can, 
however, be implemented on any physical link, 
including LANs, backplanes, system buses, and 
proprietary switch fabrics.  

Conclusion 

Today, almost every embedded device must 
communicate with other embedded devices—or to a 
larger system— through some form of interconnect, 
be it a system bus, backplane, switch fabric, LAN, 
wireless network, or the Internet. This development 
has, without question, added an extra layer of 
complexity to embedded design. Unfortunately, 
most operating systems have not kept pace with this 
new era of “connectivity.” As a result, developers 

 

Figure 4. QNX distributed processing offers inherent support for redundant network links, 
allowing system designers to increase throughput, fault tolerance, or both. 
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must use one programming interface to write 
applications for a standalone device and use a 
completely different interface to write applications 
that will be distributed among two or more 
networked devices. Because of this approach, 
applications written for standalone devices can’t 
easily migrate to networked systems, and networked 
applications can’t easily migrate to standalone 
devices. Software reusability suffers. 

With QNX distributed processing, on the other hand, 
developers can write their applications one way, 
regardless of how those applications may ultimately 
be deployed. The same, simple message-passing 
paradigm that works on a single CPU also works 
across the network. Code can migrate between 
standalone and networked systems easily, with little 
or no modification. 

Moreover, any application can, given appropriate 
permissions, transparently access virtually any 

resource on any other node, as if that resource were 
local. System designers can leverage this location 
transparency to achieve any number of design goals, 
from reducing hardware component counts to 
achieving fault tolerance to building massively 
scalable multi-processor systems. At the same time, 
QNX distributed processing consumes significantly 
less overhead than conventional means of 
interprocessor communication, making it suitable for 
even resource-constrained embedded devices. 

In summary, QNX distributed processing is scalable, 
efficient, easy to use, and transparent to both the 
developer and the application. This not only makes it 
ideal for a variety of embedded designs, but also 
makes the task of building distributed systems 
significantly easier than traditional messaging 
infrastructures. 
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