

An Introduction to QNX Transparent Distributed Processing
Yi Zheng, Product Manager, Safety and Security Products
QNX Software Systems Limited
yzheng@qnx.com

Abstract

In a conventional network, devices can share files
and data with relative ease. Imagine, however, if any
device in a network could, without complex software
programming, access the hardware resources—
Flash memory, Internet connection, graphics chip,
and so on—of any other device as easily as devices
now share data. Such is the promise of transparent
distributed processing.

In this paper we briefly introduce QNX transparent
distributed processing, and explain how this
technology can be used to connect disparate
interconnected devices into a single logical
computer. We present some examples of how
transparent distributed processing can be used to
meet design requirements ranging from reducing
hardware component counts to building fault-

tolerant systems that can harness the computing
power of hundreds of processors.

What Is Transparent Distributed
Processing?

The principle behind transparent distributed
processing is simple: to merge all interconnected
devices into a single logical computer, where
applications can use just one simple programming
interface to access both local and remote resources.
If an application needs to access, say, a hard disk, it
can do so without knowing whether that disk is
located on the local device or on another, network-
connected device.

Figure 1. QNX message passing integrates a network of individual devices into a single logical machine. An application
running on one node can access the resources of any other node, without special software programming.

An Introduction to QNX Transparent Distributed Processing QNX Software Systems

2

Using this capability, we can easily create both low-
cost and high-cost variants of a platform. In a car,
for instance, we could deploy a lower-cost platform
with a single CPU shared by an instrument cluster
and an infotainment system, or a higher-cost
platform that takes advantage of two separate CPUs.
Both the single-and dual-CPU variants would use
exactly same software load.

In fact, system designers can leverage the location
transparency provided by transparent distributed
processing to achieve any number of design goals,
from reducing hardware component counts to
achieving fault tolerance to building scalable
systems that harness the power of hundreds of
multicore processors.

Fault-tolerant systems

Besides eliminating unnecessary hardware, the
location transparency provided by QNX distributed
processing can also simplify the design of fault-
tolerant, load-balancing systems. For instance, let’s
say a machine provides compute services for client
applications throughout a network. What happens if
that machine fails and a backup machine, serving
as a “hot standby,” has to take over? With QNX
distributed processing, the client applications don’t
have to be informed that a new machine is now
handling their requests, nor do they require special
programming to locate the new machine. Any
messages they send can be automatically routed to
the new destination.

 QQNNXX wwiitthh QQnneett LLiinnuuxx

CCoommppii llee tt iimmee 1. Nothing: shared .h file used for devctl()
definition.

1. Define function using Interface Definition
Language

2. Create/generate Proxy (local end that
accepts function call).

3. Create/generate Stub (remote end that
executes function call).

RRuunn ttiimmee
((llooccaall:: ccaallll))

IInnii ttiiaall ii zzaatt iioonn 1. Open file as per normal. 1. Create and bind socket

MMaakkee aa ccaall ll 1. Normal read()/write()/devctl() calls; QNX
takes care of proxying message to remote
end

1. Call Proxy function
2. Marshall arguments (i.e. expand them into

network-consumable form)
3. Send to remote end over socket
4. Block on reply
5. Unmarshall return arguments (i.e. convert

from network form to programmatic)
6. Return to caller

RRuunn ttiimmee ((rreemmoottee::
rreecceeiivvee))

IInnii ttiiaall ii zzaatt iioonn 1. Standard resmgr setup 1. Create and bind socket
2. Create listener

RReecceeiivvee aa ccaallll 1. Respond as per normal to
read()/write()/devctl() calls; QNX takes
care of returning results to caller

1. Block on input
2. Unmarshall function arguments
3. Call stub function to execute, passing

arguments
4. Marshall return value and return args
5. Send back as response
6. Go back to block on input

Table 1. Comparison of a simple remote procedure call using QNX with Qnet and using another OS, such as Linux,
assuming TCP/IP is used.

QNX Software Systems An Introduction to QNX Transparent Distributed Processing

 3

Distributed message passing

We’ve discussed what QNX distributed processing
can do—but how, exactly, does it work? The answer
can be found in the microkernel architecture of the
QNX® Neutrino® RTOS, which provides the
foundation for this unique networking technology.

In a conventional operating system (OS), most
system services—device drivers, file systems,
protocol stacks, and so on—run in the OS kernel.
Any application that needs to access those services
must, as a result, invoke kernel calls. Unfortunately,
kernel calls don’t cross processor boundaries; they
can only invoke services running on the local CPU. It
thus becomes difficult, if not impossible, for an
application to access system services located on
another device.

By implementing a microkernel architecture, the
QNX Neutrino RTOS offers a way out of this
dilemma. In a microkernel OS, only the most
fundamental OS primitives (e.g. threads, mutexes,
timers) run in the kernel itself. All other services,
including drivers, file systems, and protocol stacks,
run outside of the kernel as separate, memory-
protected processes.

Since these services don’t run in the kernel, they
don’t have to be accessed by kernel calls. Rather,
applications can access the services via message
passing, a form of IPC that, when properly
implemented, can flow transparently across
processor boundaries. An application can, therefore,
access virtually any remote service on any node,
simply by sending it appropriate messages. In fact,
the application can send the exact same messages
regardless of whether the service is local or remote.

This message-passing model has another benefit: it
forms a virtual “software bus” that allows any service
or application to be started or stopped dynamically.
Drivers, protocol stacks, and file systems can all be
upgraded or restarted, without rebooting the entire
system.

Note that Qnet is not the only generic method for
making remote function calls. Other methods
include CORBA (Unix), which according to some is
diffcult to use and hence prone to poor
implementation, and ActiveX/DCOM (Windows),
which Microsoft proposed as an alternate technology
to CORBA, but which it was never able to scale
sufficiently well to make generally useful1.

Industry-standard POSIX interfaces

Message passing provides the foundation on which
QNX distributed processing is built. However, there
is no need for developers to learn a complex
messaging protocol. Unlike with NFS (Network File
System), SMB (Server Message Block) or a
client/server approach, an application does not need
to know anything about the protocols of the nodes
where it needs to access services, as long as these
nodes are running QNX with Qnet. To exchange
messages with remote services, a client application
can simply use industry-standard POSIX function
calls. Using symbolic links to redirect a resource to
the appropriate node further simplifies application
development.

Let’s examine how this works. In the QNX Neutrino
RTOS, any service-providing program (a device
driver, for instance) can adopt a portion of the
pathname space. Any application can then access
that driver by issuing a POSIX open() call on the
pathname. The application will receive a file
descriptor in return, at which point it can begin
issuing POSIX file-descriptor calls—such as read(),
write(), and lseek()—to access the driver’s services.
To read some incoming data, for instance, an
application would issue a read() call, and the
underlying C library would transparently convert the
call into the appropriate read message.

1 See, for example, Michi Henning, “The Rise and Fall of

CORBA”, acmqueue, Association for Machine
Computing, 1 June 2006.
<http://queue.acm.org/detail.cfm?id=1142044>

Figure 2. With transparent distributed processing, messages are passed to services indifferently of CPU location.

An Introduction to QNX Transparent Distributed Processing QNX Software Systems

4

For instance, Figure 1 shows two processes that
need to communicate with each other: in a
hypothetical medical device with the HMI, including
diagnostic displays and alarm controls, on Node 1
and pump control and monitoring on Node 2. If both
processes were running on the same device, the
client could invoke the following open() call, and the
OS would establish a connection between the two
processes:

/*Open a Flash file system */
fd = open("/dev/fs1",O_RDWR...);

In our case, however, the power-safe filesystem is on
another device. Consequently, the client could issue
the following code instead:

/* Open a power-safe file system
 on node 2*/
fd = open("/net/node2/dev/fs1",O_RDWR...);

As you see, the code is identical to the code used in
the single-node scenario, with one exception: the
pathname now contains a prefix that specifies the
node where the service resides.

Once an application issues a message, one of two
things will happen. If the system service receiving
the message is on the local processor, the OS
microkernel will route the message directly to the
service. But if the service resides on another node,
then a network manager—an OS process dedicated
to forwarding and receiving remote messages—will
send the message to that node. A network manager
on the second node will then receive the message
and forward it to the appropriate process (in this
case, the power-safe filesystem). The flowchart in
Figure 2 illustrates this sequence of operations.

In addition to using POSIX calls such as open(),
read(), and write(), developers can also choose to
access the messaging framework directly, using
three simple calls: MsgSend(), MsgReceive(), and
MsgReply().

Location transparency though GNS

In the example above, the client application “knows”
where the Flash file system is located (Node 2) and
uses a pathname to access the service. However,
QNX distributed processing also provides a global
name service (GNS) that makes the location of
system services fully transparent to client
applications.

With GNS enabled, an application uses an arbitrary
name, rather than a static pathname, to access a
service. For example, if an application needed to
locate a modem on the network, it could simply
specify the name “modem.” The GNS server would
then locate the modem service on behalf of the
application, and the application could then use that
service, without knowing where the service was
located.

The GNS server is especially useful for networks
whose configuration may change at any time. For
instance, a system service can be dynamically
moved from one node to another, without affecting
any of the client applications that communicate with
that service.

Redundant links for fault tolerance

To achieve load balancing or fault tolerance, many
systems use a cluster architecture that distributes
applications and services across multiple networked
nodes. These nodes can be several machines
connected by a LAN or multiple CPU cards connected
to a backplane. If one node fails or becomes
inundated with too many requests, other nodes can
take over that node’s duties until it recovers. Still, the
act of distributing applications across multiple nodes
can itself create a potential point of failure; namely,
the network that connects the nodes together. If any
portion of the network fails for any reason, then
services can become unavailable. Hence the need for

Figure 3. Network managers handle the “dirty work” of forwarding messages to remote nodes.

QNX Software Systems An Introduction to QNX Transparent Distributed Processing

 5

redundant network links
between nodes—and for a
software architecture that
allows those links to be
implemented easily.

To address this need, the
network managers that
implement QNX
distributed processing
offer inherent support for
multiple links. Moreover,
the managers support
several Quality of Service
(QoS) policies that let
system designers control
how and when traffic will
flow across each link. The
QoS policies, illustrated in
Figure 4, include:

LLooaadd--bbaallaanncciinngg —
Queue packets on the
link that will deliver
them the fastest,
based on current load and link capacity. When
this policy is in effect, the combined service of
all links is used to maximize throughput and
allows service to degrade gracefully if any link
becomes unavailable. Once a failed link
recovers, it can automatically resume sharing
the workload.

PPrreeffeerrrreedd — Send out all packets over a specific
link until it becomes unavailable, at which point
use the second (or third or fourth) link. Qnet will
automatically reroute traffic back to the
preferred link once it has rejoined the pool of
available links.

EExxcclluussiivvee — Only use the specified link. If the link
fails, no other link will be used.

Why would you use the exclusive policy? Suppose
you have two networks, one much faster than the
other, and you have an application that moves large
amounts of data. By using the exclusive policy, you
can restrict transmissions to only the fast network
and avoid swamping the slow network if the fast one
fails.

Reliable delivery

To further enhance network reliability, QNX
distributed processing supports the following
features:

 fragmentation and reassembly

 breakdown of messages into packets within the
limits of the packet interface

 assembly of incoming packets into complete
messages

 guaranteed delivery of messages and receipt of
responses on unreliable packet interfaces

Developers can also incorporate standards-based
resolver functionality, including DNS, to route traffic
to remote nodes.

Transport independence

By default, QNX distributed processing supports
both Ethernet and the Internet Protocol (IP). It can,
however, be implemented on any physical link,
including LANs, backplanes, system buses, and
proprietary switch fabrics.

Conclusion

Today, almost every embedded device must
communicate with other embedded devices—or to a
larger system— through some form of interconnect,
be it a system bus, backplane, switch fabric, LAN,
wireless network, or the Internet. This development
has, without question, added an extra layer of
complexity to embedded design. Unfortunately,
most operating systems have not kept pace with this
new era of “connectivity.” As a result, developers

Figure 4. QNX distributed processing offers inherent support for redundant network links,
allowing system designers to increase throughput, fault tolerance, or both.

An Introduction to QNX Transparent Distributed Processing QNX Software Systems

6

must use one programming interface to write
applications for a standalone device and use a
completely different interface to write applications
that will be distributed among two or more
networked devices. Because of this approach,
applications written for standalone devices can’t
easily migrate to networked systems, and networked
applications can’t easily migrate to standalone
devices. Software reusability suffers.

With QNX distributed processing, on the other hand,
developers can write their applications one way,
regardless of how those applications may ultimately
be deployed. The same, simple message-passing
paradigm that works on a single CPU also works
across the network. Code can migrate between
standalone and networked systems easily, with little
or no modification.

Moreover, any application can, given appropriate
permissions, transparently access virtually any

resource on any other node, as if that resource were
local. System designers can leverage this location
transparency to achieve any number of design goals,
from reducing hardware component counts to
achieving fault tolerance to building massively
scalable multi-processor systems. At the same time,
QNX distributed processing consumes significantly
less overhead than conventional means of
interprocessor communication, making it suitable for
even resource-constrained embedded devices.

In summary, QNX distributed processing is scalable,
efficient, easy to use, and transparent to both the
developer and the application. This not only makes it
ideal for a variety of embedded designs, but also
makes the task of building distributed systems
significantly easier than traditional messaging
infrastructures.

About QNX Software Systems
QNX Software Systems is the leading global provider of innovative embedded technologies, including middleware, development
tools, and operating systems. The component-based architectures of the QNX® Neutrino® RTOS, QNX Momentics® Tool Suite, and
QNX Aviage® middleware family together provide the industry’s most reliable and scalable framework for building high-performance
embedded systems. Global leaders such as Cisco, Daimler, General Electric, Lockheed Martin, and Siemens depend on QNX
technology for vehicle telematics and infotainment systems, industrial robotics, network routers, medical instruments, security and
defense systems, and other mission- or life-critical applications. The company is headquartered in Ottawa, Canada, and distributes
products in over 100 countries worldwide.

www.qnx.com
© 2011 QNX Software Systems Limited, a subsidiary of Research In Motion Ltd. All rights reserved. QNX, Momentics, Neutrino,
Aviage, Photon and Photon microGUI are trademarks of QNX Software Systems Limited, which are registered trademarks and/or
used in certain jurisdictions, and are used under license by QNX Software Systems Limited. All other trademarks belong to their
respective owners. 302212 MC411.98

