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Abstract 
Traditionally, proofs that software systems meet standards for functional safety have 
depended on exhaustive testing. This method is adequate for relatively simple, 
deterministic systems, with single-threaded, run-to-completion processes. It is 
inadequate, however, for today’s multi-threaded systems. The complexity of these 
systems precludes their being treated as deterministic systems in practice. 

In Part I of this whitepaper series we discuss the limits of testing of complex software 
systems, and some factors that should be weighed when deciding how to build 
complex software systems that must meet functional safety standards. In Part II, we 
propose how a combination of procedural rigor, statistical testing, and design 
verification can be used to increase confidence in complex software systems. In 
subsequent papers in this series, we will explore specific strategies for building and 
validating functional safety in complex software systems.  

 

Figure 1. A chainsaw is a safety-related system. Its primary system cuts wood; its secondary, 
functional safety system is designed to prevent injury and damage. 
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Safety-Related Systems 
In the context of the present discussion, we consider that a safety-related system is a 
system that could cause unacceptable or unforeseen injury or damage to the health 
of people, or damage to property or the environment, but that operates in a way that 
prevents it from doing so. By “unacceptable or unforeseen injury or damage” we 
mean any injury or damage that: 

• the system is not expressly designed to cause — the injury a chainsaw causes to 
a tree is acceptable; injury to the person operating the saw is unacceptable 

• has not been previously identified and deemed acceptable — some oil finding its 
way into adjacent waters is foreseen and considered acceptable practice during 
undersea oil extraction; deaths of rig workers, fires, and uncontrolled spills like 
the  2010 Deepwater Horizon oil spill is unacceptable  

In the context of our discussion of functional safety, we can decompose a system 
into two parts, the primary system and the functional safety system. Figure 1 above 
presents an abstraction of the primary and functional safety systems for a chainsaw. 

Primary system 
The primary system performs the primary task; in the case of a chainsaw, it cuts 
through wood. The components of this system are whatever is required for the 
chainsaw to cut through wood: the engine, fuel tank, On/Off switch, bar, chain, etc.  

Functional safety system 
The functional safety system is the system that ensures that during its operation the 
safety-related system causes no unintended injury or harm; in the case of the 
chainsaw, it ensures that the saw doesn’t cut or otherwise harm the operator or 
bystanders. 

This system includes, not just components that are physically part of the system: the 
off switch, safety throttle, chain guard, etc., but also components that are not 
physically part of the system we normally call a chainsaw: protective boots, gloves 
and clothing, goggles, etc., and less concrete but nevertheless very real components 
such as system maintenance, operator training, operating instructions and rules 
(Don’t drink and saw. Don’t try to stop the chain with your hand!), and so on.  

If its primary system fails, the chainsaw doesn’t cut wood. If its secondary, functional 
safety system fails, the chainsaw may or may not cut wood, but it might also cut or 
otherwise injure the operator, or other persons, animals or property. 

Note that the primary system and the functional safety system may share 
components. For example, in our chainsaw the On/Off switch is shared by both 
systems. We need it to start the saw so we can use it to cut wood; and we need it so 
we can instantly switch off the saw in an emergency. For precisely this reason, 
On/Off switches for chainsaws are designed to be easily flipped to the Off position 
while wearing heavy work gloves. 

Functional Safety 
Functional safety is the capacity of a safety-related system to function as it is 
expected to function. It is the continuous operation of a safety-related system 
performing its primary tasks while ensuring that persons, property and the 
environment are free from unacceptable risk or harm. 
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Functional Safety in Software 
Software has been employed in safety-related systems for generations. It has become 
ubiquitous in contexts ranging from oil refineries to medical devices to automobiles to 
spacecraft. In every one of these implementations the software systems—like the 
larger systems in which they operate—have undergone rigorous examination to 
ensure that they meet the required levels of safety integrity1 required for certification 
to standards such as IEC 61508  (electrical/electronic/programmable), IEC 62304 
(medical), ISO 26262 (automotive), and the CENELEC EN 5012x series (railway 
transportation). 

Systems are demonstrated to be functionally safe when they have been evaluated by 
an accredited organization, and been accorded Safety Integrity Level (SIL) 
certification. 

Safety integrity through 
testing 
Until relatively recently, the 
rigorous examination of 
software systems to obtain 
certification relied principally 
on process evaluation and 
testing. All possible states and 
state transitions were 
identified, and the system was 
exhaustively tested to 
demonstrate that at each state 
and state transition the 
software behaved as required.  

This approach to 
demonstrating safety integrity 
and obtaining system 
certification rests on two 
premises. First, it assumes that, unlike hardware, software does not wear out. If a 
software system can once be shown to work correctly in all states and state 
transitions, it will always work correctly in all states and state transitions. Second, it 
also assumes that the software system is deterministic; that is, that the system is 
finite and that all its states and state transitions can be identified and, hence, tested 
for conformity with required behavior. 

Software does wear out 
No, we are not suggesting that software gradually drops instructions until it becomes 
threadbare like an old coat, or holes appear where perfectly valid code used to be. It 
does not wear out with use. Unfortunately, however, in practice software does wear 
out in the sense that it no longer performs adequately or correctly what it was 
originally built to do. Without any changes being made to the code, the software may 
cease to behave as required, just as, without any express changes, a coat may cease 
to keep its wearer warm in winter because, for instance, it has changed context. Its 

                                                        
1  EN 50126, for example, defines safety integrity as “the likelihood of a system satisfactorily 

performing the required safety functions under all the stated conditions within a stated period 
of time”. 

Software is not always to blame 
Software has been blamed for many costly and 
highly publicized failures. Among the best known 
of these failures are the Ariane 5 launch debacle 
of 1996 (see below), and the Mars Global Orbiter 
failure in 2007. 

Software is not always to blame, however. For 
instance, when US Airways Flight 1549 lost power 
in both its engines in January 2009, the flight crew 
was able to ditch in the Hudson River because the 
flight control software continued to function 
correctly and allowed them to control the plane. 

Hardware (the engines) failed, but the 155 people 
on the Airbus survived. They owe their lives to the 
crew’s cool heads and decisive actions—and to a 
well-designed flight control system. 
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owner bought and wore it in, say, London, but has since moved—and taken the coat 
along—to Helsinki. 

Software can wear out or, perhaps more 
accurately, cease to perform adequately 
or correctly, when it changes context. 
Code that works perfectly on one 
processor might not continue to do so 
when we move it to another processor. 
For example, every processor has a 
long and unique list of errata, and these 
can affect the way software runs. 
Software may run correctly on one 
processor because of a hidden fault 
with that processor, then fail on a 
processor without that fault. The 
instances of software working properly 
for years then failing are legion, though 
few are as dramatic, costly or famous as 
the Ariane 5 incident. (See “What we 
learned from Ariane 5” on this page.) 

The End of Deterministic 
Systems 
More significant than the assumption 
that software does not wear out is the 
assumption that a safety-related 
software system is deterministic, that 
every state and state transition in the 
system can be known and tested. This 
assumption was largely valid for 
software systems in the past, and 
remains valid for many safety-related 
systems in use today.In practice, if we 
rely on exhaustive testing to prove that a 
system meets functional safety 
requirements, the system must be 
simple. For a software system, this 
requirement often means that the 
system is limited to single-threaded, 
run-to-completion processes. In such a 
system, rate monotonic scheduling, or 
something similar may be needed to 
prove that all processes meet their 
deadlines, and, if internal states can be 
pre-set, testing can demonstrate 
conclusively that processes do meet 
their deadlines. 

Today, these sorts of systems are being increasingly relegated to very specific tasks, 
such as controlling anti-lock brakes, and are being (or should be) replaced by more 
complex systems with multi-threaded applications. The Engineering Safety 
Management Yellow Book 3,  Application Note 2: Software and EN 50128, published 
by Railway Safety on behalf of the UK railway industry even states that “if a device 

What we learned from Ariane 5 
Thirty-seven seconds after it was 
launched on June 4 1996, the European 
Space Agency’s (ESA) new Ariane 5 
rocket rained back to earth in pieces. 
This failure was rather costly: some US 
$370 million, and a stinging 
embarrassment for ESA. 

It has become one of the best known 
instances of software that had been 
exhaustively tested and even field proven 
— in this case, more accurately, sky-
proven — ceasing to function correctly 
though it had not been changed. What 
had changed was the context in which 
the software ran. 

The acceleration of the Ariane 5 was 
greater than that of its predecessor, the 
Ariane 4, for which the Ariane 5’s Inertial 
Reference System (SRI, Système de 
Référence Inertiel ) had originally been 
designed and tested. In the new context, 
though the Ariane SRI itself had not 
changed, in practice it had worn out; it 
was no longer able to function as 
required. 

Fortunately, the Ariane 5 incident did not 
cause any fatalities. Its importance for 
ensuring functional safety in software 
systems is far greater than its immediate 
cost. It provided a dramatic 
demonstration of the limitations of state-
based testing as a means for ensuring 
functional safety. 

This demonstration may in the long run 
lead indirectly to savings (even perhaps 
to the ESA) far greater than the US $370 
million that it originally cost the ESA, 
because it led to increased research into 
other means of proving that a software 
system meets its functional safety 
requirements. 
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has few enough internal stored states that it is practical to cover them all in testing, it 
may be better to regard it as hardware.”2 

Stranded in an elevator 
Figures 2, 3 and 4 below3 are state diagrams for an elevator and its door in a three 
storey building. They illustrate just how difficult it is to validate even a simple system 
through testing.  

The building contains a single elevator. On each of the building’s three floors there is 
a door so that people can step in and out of the elevator. A central elevator controller 
sends signals to the cage to cause it to move up or down. 

To keep our example simple, we have our elevator controller ignore requests from 
the building occupants to come to their floor: if this were a real building the call 
button by the elevator might, as we’ve all suspected at some time, light up to make 
us feel good, but  would have no effect on when the elevator arrived. Also to keep 
things simple, our controller doesn’t check if the elevator doors on each floor are 
open or closed. 

The elevator 
Figure 2 shows a state diagram for our elevator. The 
elevator can receive one of two possible instructions 
from its controller: go down (?down), or go up 
(?up). 

If the elevator is at the top floor, an ?up instruction 
to go up does not change its location; similarly, if it is 
at the bottom floor, a ?down instruction has no 
effect. This system is simple enough to be 
exhaustively tested and shown to meet its 
requirements. 

The doors 
Figure 3 shows a state diagram for our elevator 
doors. This system is even simpler than the system 
that controls the elevator’s movements. The doors 
can either open (?open) or close (?close). An 
instruction to change to their present state, for 
example, ?close when the doors are closed, has 
no effect. 

The elevator controller 
Figure 4 shows a state diagram for the elevator 
controller, which sends instructions to the elevator 

and to the elevator doors. This system is still a very simple system, but it requires 
more careful examination than do the elevator system and the door system. In fact, it 
contains a fault that may not be immediately apparent. 

This system is simple enough that we can uncover the fault through testing—as long 
as we test the right state transitions; or through design verification—as long as we 
ask the right questions. A potential condition we might wish to test is that no door 
should open or remain open unless the elevator is at the floor with that door. This 
                                                        
2  Application Note 2: Software and EN 50128. London: Railway Safety, 2003. p. 3. 
3  Adapted from B. Berard et al, Systems and Software Verification. Berlin: Springer, 2001. 

 

Figure 2. A simple system. The 
elevator can receive 
instructions to go up or down to 
the next floor. 



Building Functional Safety into Complex Software Systems, Part I 

QNX Software Systems Limited  6 

condition could, in principle, be tested, but it would be tested only if we have thought 
of the dangerous condition. If we do not think of this condition,  we cannot test for it, 
and someone just might find an open door and fall down the elevator shaft.  

However, even if we design the 
system so that doors do not open 
without the elevator at the 
apporiate floor, the system fails to 
ensure that someone does not get 
stuck in the elevator. If, for 
example, we get on the elevator 
on the bottom floor, the controller 
can send us on an endless 
journey from floor to floor. The 
elevator doors never need to 
open. To save ourselves, we 
would have to find a way to get 
someone outside the system to either inject an !open instruction when the elevator 
reaches a floor and before the controller issues another !up or !down instruction, or 
to force the controller to issue an !open instruction after n ups and downs, in much 
the same way that telecommunications networks drop packets that cannot be 
delivered after n hops. 

This simple scenario underlines 
one of the key challenges we 
face when we attempt to verify 
even very simple systems. 
Testing and design validation 
can only reveal the presence of 
faults we have anticipated. 
Except in the most trivial 
systems, such as the elevator 
door system shown in Figures 2 
to 4, they cannot confirm the 
absence of faults. They can only 
confirm that what we test 
behaves in the specified way, 
and that the system does 
correctly what we asked about 
the system. If we want to 
confirm that the elevator doors 
will not open without the elevator 
being present, we can test the 
system and verify its design to 
ensure that, indeed, it protects 
people from falling down the 
elevator shaft. 

However, if we forget that people 
can also become trapped in 
elevators and we do not test for 
this problem, or do not ask if 
this could happen to someone 

taking our elevator when we verify the design, this rather serious fault can slip 
unnoticed into our system. We forgot to ask if all elevator rides must end. Of course, 

 

Figure 3. A simple system. The elevator doors can 
receive instructions to either open or close. 

 

Figure 4. A simple system with a fault. There is no 
guarantee that the elevator door will ever open. 
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as a system increases in complexity, so will the number of these sorts of faults. As 
our elevator system shows, even in a very simple system it is easy to miss functional 
safety requirements that in hindsight are glaringly obvious. We cannot insist too 
much on the importance of a well-selected set of functional safety requirements.  

Testing of complex systems 
In theory, a system with multi-threaded processes is deterministic. All its states and 
state transitions can—again, theoretically—be identified. However, these states and 
state transitions are so numerous that in practice they cannot be counted, to say 
nothing of testing them. The number of possible states, state transitions and their 
effects on the system is so great that, in practice, the system might as well be 
infinite. 

Further, even if these states, state transitions and consequences could be 
enumerated, their nature and complexity make it impossible to test many transitions, 
because it would still be impossible to force the starting points from which these 
transitions move.  

Multi-threaded kitchen drawers 
To illustrate how a complex system becomes impossible to test exhaustively in 
practice, we can assume that we somehow got out of our elevator and have gone 
shopping for furniture. In the furniture store we come across a device which will In 
this particular case,  the device opens and closes a kitchen cutlery drawer 
repeatedly, recording and displaying the number of times it has performed this 
movement, proving that the drawer design and manufacturing are of sufficiently well 
designed and manufactured to last x years. 

For example, at the rate of one test every two seconds, in two weeks the test would 
be repeated 302,400 times. On the assumption that in a real kitchen the drawer 
would be opened and closed an average of seven times a day, this test would 
demonstrate that the drawer would last 118 years in a real kitchen—somewhat 
longer than most modern kitchens go without some sort of makeover.serve well to 
illustrate our point. The device is used to demonstrate furniture quality by repeating 
actions that imitate how the furniture would actually be used: “use cases” in the 
language of software testing. 

If, however, the proof must demonstrate that a complex of, say, 1000 drawers is 
designed to last 118 years, that there are rules stipulating that drawers may or may 
not be opened depending on what adjacent drawers are doing, that the drawers may 
decide to move around in the complex based on this adjacency in order to be able to 
open or close, that if it’s Tuesday blue drawers must open only half way, and red 
drawers must not close, and, finally, that the operation of some or all drawers 
depends on the precise location and state of sets of between 14 and 23 drawers, 
then the proof starts looking more like testing a multi-threaded software system. 

The number of possible states and state transitions quickly grows to the point that 
the drawers may often seem to have minds of their own, and, in practice, it quickly 
becomes impossible to provide proof that the complex of drawers will indeed 
function without failure for 118 years, or even a single day. If we remember how easy 
it was to let an error slip into our very simple elevator controller design because we 
did not ask the right question (Can people become trapped in the elevator?), we 
must accept that our slightly more complex system with 1000 drawers will include 
faults.  

Significantly, the Ariane 5’s SRI  was not tested adequately because, among other 
reasons, with one of the two proposed methods of testing “accurate simulation  … is 
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quite expensive”, while with the other proposed method “simulation of failure modes 
is not possible with real equipment, but only with a model”, and testing with a model 
was complex and insufficiently accurate4. (See also “What we learned from Ariane 5” 
on page 4.) 

The system was not tested for the specific fault that would cause the failure, because 
no one asked the right question, and because the system had not been soaked 
under live conditions. Either of these verification procedures would have revealed the 
fault. We should remember, though, that every complex software system is like the 
Ariane 5’s SRI: it contains faults no one can imagine before they cause an error or 
failure, and even for potential faults that have been identified, the systems are 
incompletely tested. 

Functional Safety with SOUP 
If we accept, first, that safety-related systems will increasingly require more 
interaction and computing power than can be provided by single-threaded, run-to-
completion systems, and, second, that complex, multi-threaded software systems 
cannot be validated for functional safety through exhaustive testing, then it becomes 
essential to map out new, more comprehensive strategies for verifying that a system 
is functionally safe. In short, projects that develop functionally safe systems must 
have more in their verification plans than simply “TEST” and “TEST AGAIN”. 

A witch’s brew of dubious ingredients 
As with all software design, no strategy for designing a safety-related system is 
perfect, and the choice of which strategy to use depends very much on the 
particulars of each project. These design choices include various combinations of: 

• software built in-house from scratch 

• SOUP (Software Of Uncertain Provenance/Pedigree) 

• software with functional safety certification 

A comprehensive discussion of the merits of each approach and their various 
possible combinations would fill a few library shelves, and cannot be entertained 
here. A few comments may be helpful, however. 

Software built from scratch 
This approach often appears to be the obvious solution. If the entire system is 
designed and build from scratch, then the designer and builder control both process 
and product from start to finish. There are no unknown or dubious components, and 
control of the process as well as the final product facilitates certification, which 
usually includes the design and development process as well as an examination of 
the finished product. 

If, however, we remember that “software failure rates do in fact follow the 
conventional bathtub curve”5, the do-it-yourself approach to ensuring that a system 
meets its functional safety requirements begins to looks less attractive. 

Experience has shown us that no matter how well-designed, built and verified, a 
system has a higher failure rate when it is newest. Everyone is familiar with the high 

                                                        
4  J. L. Lions et al., Ariane 501 Inquiry Board Report. Paris: ESA, 1996, p. 8-9. 
5  Chris Hobbs, “Protecting Applications Against Heisenbugs”. QNX Software Systems, 2010. 

www.qnx.com. 
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failure rate of software when it is first exposed to the field and different usage 
patterns uncover latent faults. Hence, a system that incorporates components that 
have stood the test of time may in fact be a better choice than a new system built 
from scratch — even if some of these are of unknown provenance or pedigree. 

To this we must add that for software built from scratch there is clearly no data on 
which to build a proven-in-use argument: the software has no history; and that 
building the software from scratch top-to-bottom—or, more accurately, bottom-to-
top—is a gargantuan task beyond the capabilities and schedules of most projects. 

SOUP and clear SOUP 
Software vendors often make the distinction between COTS (Commercial, off-the-
shelf) software, and SOUP. COTS software, they say, has a vendor standing behind 
it, a company that has staked its reputation—and its financial future—on this 
software functioning as specified, while SOUP has no one standing behind it. 

This position is valid in the same way 
that it may be preferable to buy 
medication from a reputable pharmacy 
than from some web site that uses 
spam to advertise. However, in the 
context of functional safety, it is mostly 
irrelevant since for us most COTS is 
probably SOUP because processes, 
code, fault histories, and everything else 
required for certification may not be 
available to anyone outside the selling 
organization. 

A more useful distinction is between 
SOUP and clear SOUP. A COTS 
system, such as a Microsoft Windows 
operating system, is opaque SOUP 
because, though it may have a well-
documented development process, its 
source code and failure history are not 
available for public scrutiny.  

In contrast, open source projects such 
as Apache and Linux are clear SOUP 
because they make their source code 
and fault histories freely available. 
Thanks to years of active service these 
projects’ characteristics are well-known. 
Like in-house software, they can be 
scrutinized with code symbolic 
execution and path coverage analysis, 
and their long (and freely available) 
histories make findings from statistical 
analysis particularly relevant. 

Despite these attractive characteristics, open source may not be the best solution, 
however. The difficulty with using open source in functionally safe systems is that 
open source development is neither clearly defined nor well-documented. We can’t 
know how it was coded or verified. It takes a leap of faith to assume that we know as 
much as we need to know about them. Add to this that SOUP or COTS may include 

An inherent limitation of testing 
No matter how simple the system, 
testing can never prove the absence of 
errors. 

Testing can only reveal the presence of 
errors. If we ask the right question 
(devise the appropriate test) about our 
elevator controller, testing will show that 
it can trap people in the elevator. Testing 
cannot confirm that the controller has no 
other errors, however, because finding 
each error requires that we devise the 
test for that error. If we cannot image the 
error, we cannot test it. 

Further, testing requires that we be able 
to generate starting states from which we 
can examine specific behaviors, 
something which we may not be able to 
do in a complex system. 

Finally, testing typically verifies reliability: 
that responses are correct for each use 
case tested. Verification of availability: 
that responses are delivered at all, is only 
done in passing. If schedules permit, a 
system may be subjected to stress tests, 
or left to “soak”, but this step is often 
pushed out to after the system has been 
deployed on the field. 
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more functionality than is needed, which leaves dead code in the system, a practice 
that functional safety standards, such as IEC 61508, expressly discourage. 

Of course, if a COTS vendor makes available its product’s source code and fault 
history, it clarifies its SOUP. Some vendors choose to go one better and provide, not 
just clear SOUP, but a clear recipe for the SOUP. That is, they release to their 
customers the detailed processes they use to build their software, along with its 
complete development history — essentially an informal audit trail that we can use to 
help substantiate claims about the software’s reliability and availability. Ideally, we 
should work with clear SOUP made with a clear recipe that has a long and well-
documented history of success in the field. 

Software with functional safety certification 
Functional safety certification evaluates the safety integrity level (SIL) of an entire 
system; when sub-systems and components are evaluated, their dependability is 
assessed in the context of the system in which they occur. The U.S. Food and Drug 
Administration, for instance, certifies medical devices as a whole — and quite rightly 
so. If, for example, a manufacturer changes the battery it uses in its pacemakers, 
someone relying on this device would likely prefer to know that it has been certified 
with its new power source, even if nothing else had changed. 

That systems must be evaluated in their entirety to acquire functional safety 
certification in no way diminishes the value of using certified components in these 
systems. Quite the contrary. Using a component, such as an operating system kernel 
whose functional safety integrity level has been certified by a reputable agency, can 
contribute significantly to achieving certification for the entire system. There are four 
key technical benefits associated with using components with functional safety 
integrity level certifications: quality, process, documentation, and vendor knowledge. 

Quality  
Certification of the component 
confirms its quality. Its claims 
to dependability have been 
independently evaluated and 
found to be true. 

Process 
In order to be certified the  
component will have to have been developed and evaluated in conformance with 
clearly defined, comprehensive processes. 

Documentation 
The certified component will include user documentation detailing how to use the 
component in a system requiring functional safety certification. 

Vendor knowledge 
The vendor of the certified component has seen the component through the 
certification process from project inception to completion, and in many cases is more 
than willing to assist customers in obtaining certification of their systems. 

This assistance can make the difference that determines a project’s success or 
failure—especially for organizations that have little or no experience with functional 
safety certification. 

QNX Neutrino RTOS Safe Kernel 
The QNX Neutrino® RTOS Safe Kernel has been 
certified to IEC 61508 Safety Integrity Level 3 
(SIL 3). It provides a certified platform on which 
application developers can implement systems 
that must meet the most stringent functional 
safety requirements. 
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These technical benefits translate directly into important business benefits, chiefly a 
shorter and less expensive certification process, and hence faster time to market, 
reduced development costs, and increased profits. 

Conclusion 
We have seen that the functional safety of today’s multi-threaded complex software 
systems cannot be validated by traditional, state-based testing alone. Though these 
systems are deterministic in theory, due to the number of possible states and state 
transitions they can present, they might as well be infinite. 

It is, nonetheless, not only necessary, but possible to build functionally safe complex 
software systems. In Part II of this paper we will explore some strategies we can use 
to design and build these systems, and the methods we can use to verify that they 
meet their functional safety requirements: procedural rigor, statistical testing, and 
design verification. 
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