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Abstract 
Traditionally, demonstrations that software systems meet standards for functional 
safety have depended on exhaustive testing. This method is adequate for relatively 
simple, deterministic systems, with single-threaded, run-to-completion processes. It 
is inadequate, however, for today’s multi-threaded systems. The complexity of these 
systems precludes their being treated as deterministic systems in practice. 

In Part I of this whitepaper series we discussed the limits of testing of complex 
software systems, and some factors that should be weighed when deciding how to 
build complex software systems that must meet functional safety standards. 

In Part II, we propose how a combination of procedural rigor, statistical testing, and 
design verification can be used to increase confidence in the functional safety of 
complex software systems. In subsequent papers in this series, we will explore 
specific strategies for building and validating functional safety in complex software 
systems.  

Preparing Functional Safety 
Achieving functional safety for a software-based system is not trivial; it is a long and 
costly process that should not be undertaken lightly, but one that can bring in 
enormous returns. 

As with any important project, the first order of business should be to assemble a 
team of experts who will set down a clear statement of precisely what will be claimed 
for functional safety and in what context, and what evidence will be presented as 
proof. The requirements that follow from this statement should become an integral 
part of the project right from the start. 

Five key tasks should be addressed; the first two must be addressed at the start of 
the project, for they define the requirements for the other tasks. The five tasks are: 

• define sufficient dependability 

• establish good development processes 

• establish methods of validation 

• build functional safety 

• validate the functional safety of the system 

Defining Sufficient Dependability 
A system’s dependability is its ability to respond correctly to events in a timely 
manner, for as long as required; that is, it is a combination of the system’s availability 
(how often the system responds to requests in a timely manner), and its reliability 
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(how often these responses are correct). In other words, a dependable system is a 
system that responds when it is required in the time required, and responds 
correctly. 

When planning functional safety, we must define precisely the criteria against which 
the system’s dependability is to be measured. This means staying clear of facile 
marketing claims of the five-nines sort: available 99.999% of the time; ergo 
completely dependable except for five minutes 16 seconds of the year. This type of 
claim is meaningless unless more information is offered about how this time when 
the system is not dependable is distributed throughout the year. 

If this claim is made about, for instance, a flight control system on an airliner it has 
very different implications if the five minutes 16 seconds (0.001% failure) occurs all 
at once, or if it is spread across one million distinct instances of 316 microseconds 
(also 0.001% failure). See Table 1 below for examples of various possible meanings 
of the phrase “five-nines availability”. 

Five minutes, 16 seconds can mean a catastrophic failure, while one million distinct 
instances of 316 microseconds may have no effect on the system’s dependability 
and may even go completely unnoticed. In fact, the airliner flight control system may 
well tolerate a system that guarantees only four-nines availability (99.99%), if 
unavailability is distributed over one million instances of 3.16 milliseconds per year 
separated by sufficiently long instances of availability. It is also worth noting the duty 
cycle of the software. Few flight control systems run for more than 20 hours at a 
stretch, after which they can be restarted, forcing rejuvenation. 

Failures per year  Duration of each fai lure 

1  5 minutes 16 seconds Potential ly 
catastrophic 

10  32 seconds 

 

100  3.2 seconds 

1000  316 milliseconds 

10,000  32 milliseconds 

100,000  3.2 milliseconds 

1,000,000  316 microseconds Possibly benign 

Table 1. Five-nines availability as it might affect a flight control system. 

Thus, a careful and comprehensive definition of dependability requirements serves a 
dual purpose. First, it provides an accurate measure against which a system’s 
functional safety can be validated. Second, by clarifying what is indeed functionally 
required, it eliminates vague (and therefore meaningless) requirements, and 
removes from the project bill the effort and cost of trying to meet them.  

Establishing Good Processes 
A good process does not guarantee that the system being built with that process will 
achieve the required level of functional safety. It does not even guarantee that the 
system will be a good one.  
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With a poor process it is possible to build a good system or even one that meets 
functional safety requirements, but to do so is much more difficult than with a good 
process. Further, a good process provides a well-defined context within which test 
results can be interpreted. By setting limits around what is tested it sets the scope of 
the tests and, by inference, the scope of what must be validated by methods other 
than testing. With a clear understanding of what will be verified by what method, it 
becomes possible to make clear and substantiated claims about a system’s 
conformance to functional safety standards. 

For example, if we return to the five-nines claims discussed above, it is quite likely 
impossible to prove by testing that the system is dependable all but a maximum of 
316 seconds a year, because to do this we would have to run the system under real 
load conditions for many years. It may be possible, though, to show by other means 
that the system recovers from errors within 316 milliseconds, and that this is 
acceptable because in the context where the system is used (an airliner rather than, 
say, a jet fighter) any error under 500 milliseconds has no appreciable effect on 
control of the aircraft. 

Establishing Methods of Validation 
A standard requirement for certification of a system’s safety integrity level (SIL) is that 
the system’s functional safety characteristics be measured, validated and 
demonstrated. This validation involves explicit claims, evidence, and expertise, as 
identified in Software for Dependable Systems, edited by Daniel Jackson. 

Explicit claims  
No system can be absolutely dependable. Hence, it is essential that any and all 
claims about the system’s dependability be clearly and explicitly articulated; that is, 
what “sufficiently dependable” means for this system.  

Evidence 
Evidence supports the assertion that the system meets the requirements for 
sufficient dependability, as stated in the explicit claims. This is, of course, what 
everyone — accreditation bodies, auditors, and customers — will be looking for. Just 
as no system is absolutely dependable, no method of validation is absolutely fool-
proof. This uncomfortable truth is particularly relevant to the validation of complex 
systems. Hence, validation of such systems will include evidence obtained by a 
variety of different methods. 

Standards such as IEC 61508 and EN 50128 list a number of viable validation 
methods. “Validating Functional Safety” on page 4 below offers some comments 
about how functional safety can be validated in a complex software system. 

Expertise 
Just as failures must at times be attributed to human error, the absence of failures 
should often be attributed to human expertise. Ultimately, it is the relevant experts 
(system architects, software designers, process specialists, programmers, verification 
specialists, etc.) who set the requirements for a sufficiently dependable system, who 
build the system, and who validate that it meets its requirements. 

Extensive knowledge of both context and problem is needed to formulate and justify 
requirements. No two software designs are alike, and great expertise is required to 
evaluate different solutions and select the designs that best meet these 
requirements. 
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Figure 1. Reason’s model (adapted) of how faults become failures applied to software design 
and development. 

Finally, a comprehensive understanding of software validation methods, the software 
system being evaluated, and the context in which it is evaluated (including 
validations of similar systems) is required to demonstrate that the software system in 
question meets its defined functional safety requirements. 

Building Functional Safety 
Validation demonstrates only that a system does (or does not) meet defined 
dependability standards. Functional safety must be build into a system from the 
start, and all work to this end should follow from the premise that all software 
contains faults and these faults may lead to failures. 

From fault to failure 
Not all faults become failures, which is fortunate because every stage of system 
development, from initial conception, through design and development to 
deployment, incorporates imperfections. Failures are the product of a series of 
conditions, decisions and actions. 

Figure 1 above shows James Reason’s model of how faults become failures, in which 
we have subdivided the defences to match the two layers in software: pre- and post-
shipment defences (with attendant holes). Pre-shipment defenses are those 
validation and verification activities carried out before deployment, while post-
shipment defenses are defenses built into the system itself and activated to protect it 
during use. The causes of every failure can be traced back—at least in theory—to a 
lacuna at each stage. 

 

 



Building Functional Safety into Complex Software Systems, Part II 

QNX Software Systems Limited  5 

Fault  A mistake in the code, which may or may not cause undesired behavior. 

Error  Undesired behavior caused by a fault in the code. 

Failure  A system failure caused by an uncontained error. 

Table 2. Faults, errors and failures 

For example, a decision maker may decide that software should be written in a 
language, such as C, that doesn’t provide much protection against programmer 
errors. Line management may organize work around teams in ways that do not foster 
good coding practices. Developers may be working under conditions that lead them 
to make mistakes: an inadequate tool set, overly-aggressive deadlines, lack of sleep, 
etc. Designers and developers are human, and therefore produce flawed designs 
and code. Testing and design verification misses some of these flaws, so they are not 
corrected. Finally, post-shipment defences, such as code written to recover from 
errors, may fail. 

Each stage of the process introduces faults. 
Some of these imperfections are benign, others 
are caught and corrected, or at least prevented 
from causing errors, others cause errors, and 
unfortunately, some of these errors cause 
failures. For example, a tired or just clumsy 
developer may want to allocate 10 bytes of 
memory, but may type: 

char fred[100]; 
int  x; 

or: 

char fred[1]; 
int  x; 

Both are faults, since they do not allocate the correct number of  bytes. In the first 
case, unless the system is subject to severe memory restrictions, the fault is unlikely 
to produce an error, much less a failure. The second case, however, may well 
produce an error, since the programmer, who believes he has a 10-byte buffer, may 
write code that will overwrite not only x, but whatever is in the next five bytes as well. 
This error could, of course, cause a failure. 

Multiple lines of defense 
Working from the premise that all faults may lead to failures, we must include 
multiple lines of defense when we design and build a functionally safe system: 

Isolate safety-critical processes  
Identify safety-critical components and processes, and design the system so that 
they are isolated and cannot be compromised by other components or processes. An 
automobile digital instrument cluster, for instance, is always isolated from vehicle 
infotainment systems, though they may both share some display space on the 
dashboard. 

Heisenbugs 
Heisenbugs may manifest 
themselves anywhere in a 
system. They are a particular 
threat to mission- and safety-
critical systems — time-bombs 
known to be in the application, 
but impossible to track down or 
remove. 
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Reduce faults  
Know and understand the environment in which the system will operate, use suitable 
tools, and design and build for this environment. Staff the project with people with 
the necessary expertise and experience, people who will be able to select, design 
and build the best possible system within the context of the project’s sufficient 
dependability requirements. For example, follow best practices (for a start, check 
return values or catch exceptions!), and ensure that working conditions allow 
designers and developers to do their best work. 

Prevent faults from becoming errors 
Design and build the system so that faults do not become errors. While the ideal 
solution is to identify and remove faults from the code, it is crucial to always assume 
that some faults will remain undetected. The systems should be designed so that as 
much as possible, faults are encapsulated and do not become errors once the 
system is deployed. 

For example, if we return to the simple example of the elevator system described in 
Part I of this series1, we could put a timer and a trip counter to force the elevator to 
stop and open its doors at some floor after a specified time has elapsed, or after it 
has made more than a specified number of trips without opening its doors. This 
mechanism would ensure that a fault like the one in our example (which allows the 
elevator to continue moving between floors forever without stopping and opening its 
doors) did not become an error and, from that, a failure.  

Prevent errors from becoming failures 
Again, assuming that no software is fault-free and that faults will at some point cause 
errors, design to prevent errors from becoming failures. Replication is a common 
method for preventing errors from becoming faults. It is used extensively with 
hardware, but can also be useful for software. 

Various replication models are possible, including transactional replication, where a 
passive system is synchronized with the currently active system and takes over in the 
event of a first system failure; and group synchrony, where unsynchronized systems 
all perform all requested tasks and the requester (or consumer, or client) accepts 
either the first result, or all results and uses the result of majority consensus. 

Specific for software, data and information can be replicated by being stored in 
different locations and different formats, or provided with error-detection and error-
correcting bits to guard against loss and corruption. Time (or processing) replication, 
which performs the same computation multiple times, either on the same or different 
processors, can help avoid availability issues, particularly those associated with 
Heisenbugs.  

We will examine in more detail specific techniques for building and validating 
functional safety in subsequent instalments of this whitepaper series. 

Validating Functional Safety 
After taking all possible care to ensure that functional safety is designed and built 
into a  software system (that, for instance, deadlines and other pressure did not 
cause anyone to make mistakes or deliver shoddy work) the system is not 
functionally safe until it is proven functionally safe. Claims about its dependability 

                                                        
1 Chris Hobbs et al, “Building Functional Safety into Complex Software Systems,  Part I”. QNX 

Software Systems, 2011. 
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must be validated. For a complex software system, this validation must comprise at 
least testing and design verification. 

Testing 
Testing asks the question: “What confidence can we have in the assertion that the 
module, integration unit or system has correctly implemented its requirements?” 
Figure 3 on the right illustrates how, in a traditional waterfall development, the 
various levels of testing correspond to the levels of architecture and design. 

In any but the simplest system, as one moves up the right-hand part of the V (the 
grey box in Figure 3), testing inevitably becomes less and less thorough, and the 
results we obtain from testing must be understood as a sampling, which we must 
analyze statistically. 

 

Figure 2. Testing, statistical analysis, and retrospective design validation complement each 
other to validate the functional safety of a complex software system. 

The exception to this rule is module testing, which by its nature is not affected by the 
temporal complexities of a system or subsystem. Here, techniques such as symbolic 
execution can complement manual test case generation, using means such as 
equivalence class partitioning and boundary value analysis. A tool such as the KLEE 
Symbolic Virtual Machine can automatically generate test cases with good path 
coverage that can form the foundation for more focused, manually-generated tests. 
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However, for the reasons outlined in Part I of this series, with today’s complex 
software systems such certainty is no longer possible in the test layers above module 
testing. We cannot provide a statistical “cookbook” for the analysis of test results, 
and testing must be undertaken by with techniques like those described below. 

Statistical analysis of random tests 
Statistical analysis of random tests attempts to determine the following: “If N 
randomly-chosen tests have been run on the system without a failure being invoked, 
then what confidence can we have that the system will meet a particular failure rate? 
This is normally calculated as 

N

h
=M ⎟

⎠

⎞
⎜
⎝

⎛ −−
111  

where M  is the confidence, h is the acceptable failure level (e.g. 1000) and N is the 
number of tests. 

This formula alone illustrates the effort involved in testing. For example, if the 
requirement is that the system meet IEC 61508, SIL3 (Safety Integrity Level 3) for a 
low demand system; that is, if it must operate correctly 9,999 times out of 10,000, 
then h = 10,000. If we require a 99.5% confidence that our system meets SIL3 (M = 
0.995), then the number of tests required is  
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In other words, for the safety analyst (and the auditor) to have a 99.5% confidence 
that the low-demand system meets IEC 61508 SIL3 standards, we would need to 
execute over 50,000 random tests representative of the field operation of the system 
without detecting a failure. Should we encounter a failure, we would need to correct 
the system and run a further set of 50,000 random but representative tests. 

The main problem with this technique is the difficulty we have in producing random 
tests that are representative of the use to which the system will be put. If our 
formulation of the system’s dependability claims includes a good definition of the 
environment and what is meant by “sufficient dependability” for that system, we may 
be able to reduce the number and scope of these tests 

For instance, if we determine that printing is not required for sufficient dependability, 
we may be able remove printing from our claims and thus reduce our test cases—
assuming, of course, that we can demonstrate that we have isolated printing in its 
own address space and that it cannot adversely affect anything else in the system. 
We will not, however, be able to make the problem go away, and will need to use 
other techniques to help demonstrate our system’s sufficient dependability.  

Remaining fault estimation 
Over the years many functions have been applied to estimating the number of 
remaining faults and thereby determining the point at which testing is no longer 
economical. These functions are particularly difficult to determine because, as is well 
known, correcting one bug often introduces others. Fault injection is a statistical 
technique for determining, at any point in the testing cycle, the number of significant 
faults that remain in the system. 
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With fault injection, bugs with 
characteristics of possible 
remaining (unknown) bugs are 
deliberately introduced into 
the code. This deliberate 
introduction of bugs in the 
code has several beneficial 
effects. 

• Most system testing does 
not exercise the code that 
is executed if a fault 
causes an error and 
recovery occurs. When we 
deliberately inject faults 
into the main system, we 
cause this detection and 
recovery code to be 
invoked and thereby tested. 

• By their nature, the types of non-reproducible, timing-related bugs that are the 
bane of complex systems are not normally isolated during conventional system 
testing.  By deliberately introducing faults and determining what percentage of 
these faults are identified by the testing, we can estimate the total number of 
inadvertently introduced faults remaining in the code by assuming that the 
distribution of seeded to unknown bugs in the systems is the same as the 
distribution in the test. With this information we can determine what and how 
much further testing (and correction) the system requires in order to meet its 
functional safety requirements. 

The chief difficulty with fault injection is creating artificial faults with the same 
characteristics as the (unknown) faults already in the software. Injected software 
faults can randomly corrupt data (simulating a race hazard), a program (difficult in 
systems with good memory protection) or timing (by artificially consuming processor 
cycles and preventing other programs from running). Certainly, as with statistical 
analysis of random tests, the results of this type of fault injection require careful 
statistical analysis. 

We hope that, if we have made anything clear in this brief discussion on validating 
functional safety, it is not just that testing alone is inadequate to validate functional 
safety, but  especially that no one method is sufficient. Testing and statistical analysis 
are part of the answer; they should be complemented by other methods of validation, 
such as design verification. 

Conclusion 
We saw in Part I that the functional safety of today’s multi-threaded complex software 
systems cannot be validated by traditional, state-based testing alone. Though these 
systems are deterministic in theory, due to the number of possible states and state 
transitions they can present, they might as well be infinite. It is, nonetheless, not only 
necessary, but possible to build functionally safe complex software systems. 

In Part II we have seen that functional safety should be designed and built into a 
software system from its inception. It begins with the best available expertise and a 
clear definition of the system’s dependability requirements: its sufficient 
dependability. This definition of what is meant by sufficient dependability must be 

The de Havilland Comet Catastrophes 
The de Havilland Comet airliner catastrophes 
provide excellent examples of an inadequate 
definition of the environment in which functional 
safety was required. 

Metal fatigue, specifically unforeseen stresses 
around the airliners’ rectangular windows, caused 
two Comets to disintegrate over the Mediterranean 
in January and April 1954. These failures 
occurred despite the Comet’s having been 
subjected to testing in a water tank and 
decompression chamber for the equivalent of 
40,000 hours of service. No one at the time 
understood the kinds of stresses to which a jet 
airliner is subjected — no one understood the 
environment. 
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followed by the application of rigorous standards and practices throughout the 
system design and development, and a comprehensive validation program that 
includes, in addition to traditional state-based testing at the module level, statistical 
testing, and design verification. We will address design verification, and, more 
specifically, retrospective design verification, in Part III of this series. 
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