

QNX Software Systems Limited 1

Ten truths about building safe
embedded software systems
Yi Zheng, Product Manager, Safe and Secure Systems
Chris Hobbs, Senior Developer, Safe Systems
yzheng@qnx.com,chobbs@qnx.com

Obtaining safety certifications and pre-market approvals for safety-related
systems and the larger systems, devices, components, machinery, and
vehicles in which they reside is an arduous and costly undertaking.

Whether the software is an IEC 62304 medical device that must obtain FDA
Class III pre-market approval, an embedded train control system that must
meet requirements set out in the EN 5012x series, an automotive system
with different components requiring different ISO 26262 automotive safety
integrity level (ASIL) certifications, or indeed any IEC 61508 SIL-rated
software system, certifications and approvals must be an integral part of the
project.

If these projects
are to be
successful,
manufacturers
must look beyond
the strictly
technical
challenges, and
focus also on the
environment and
culture needed to
develop safe
software systems.
Specifically, they
should consider
ten fundamental
(but often ignored)
truths about
building and obtaining certifications and approvals for these software
systems.

In short, safety should be no accident. It must be embedded in the practices,
processes and culture of every organization building safety-related systems.

1. A safety culture
Without a company-wide safety culture, it is unlikely that a safe software
product can be built.

A safety-culture is not only a culture in which engineers are permitted to raise
questions related to safety, but a culture in which they are encouraged to
think of each decision in that light. A programmer might think, “I could code

Figure 1. Planning for failure: components in a software
system can be isolated from each other along multiple
axes to help prevent faults from percolating across the
entire system. See “System failures” below.

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 2

this message exchange using technique A or B and I am not sure how to
balance the better performance of A against the higher dependability of B”
and know with whom that decision should be discussed. The culture that
encourages the programmer even to consider the question must be nurtured.

2. Experts
Safety requires professionals. It takes specialized training and experience to
define what a safe system must do and to verify that it meets its safety
requirements.

Safe systems must be simple. And creating a simple system is the hardest
challenge for any engineer.

Ultimately, it is the relevant experts (domain experts, system architects,
software designers, programmers, process specialists, verification
specialists, etc.) who determine the requirements, select appropriate design
patterns, and build and validate the system.

Figure 2. Detail from a diagram showing the probability of failure per hour for a
medical monitoring device reference design. Great expertise is required to
identify risks and correctly calculate probabilities of failure.

Such expertise is expensive because it must be based on experience rather
than training: few university undergraduate courses in computer engineering
cover embedded software development, and even fewer teach the elements
of creating embedded systems with sufficient dependability (see sidebar).
Software design patterns and techniques have moved significantly since the
mid-1990s but many designers have not been exposed to these changes.

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 3

3. Processes
It is no accident that standards such as IEC 62304 are about processes.
Without good processes we will never be able to demonstrate that a system
meets its safety requirements.

Good processes are a measurable proxy for something that is largely
unmeasurable. It is relatively easy to measure whether a process has been
followed; it is much more difficult to assess whether good quality design and
code are being produced. While no one claims that a good process
guarantees good product, it is generally recognised that good product is
unlikely to result from a poor process.

Good processes are need to develop a safe system, not because these
guarantee the production of a safe product but because:

1. They provide the environment within which development parameters can
be assessed. For example, having a good test process allows statistical
claims to be made about test coverage. Without the process, this would
be impossible.

2. They provide the structure within which the chain of evidence in the
safety case is preserved. Retrospectively producing a safety case is
possible but expensive and would almost certainly require the re-
generation of evidence that existed during the project development but
which was not preserved.

4. Explicit claims
Safety claims must explicitly state dependability levels, and the limits within
which these levels are claimed.

The FDA states the case very well:
“indirect process data showing
that design and production
practices are sound”1 is not
adequate to demonstrate that
software is safe, and “device
assurance practices […] focused
on demonstrating product-specific
device safety” are also required. In
short, process is not enough.

This demonstration that a software
system meets its safety
requirements, is included in the
safety case for the product. It
reflects the observation above that
the purpose of a high quality

1 Charles B. Weinstock and John B. Goodenough, “Towards an Assurance Case

Practice for Medical Devices”, Carnegie Mellon University, Software Engineering
Institute, October 2009, p. 1. <http://www.sei.cmu.edu>

Sufficient dependability

No system is absolutely dependable,
and we must understand what our
system needs in order to be
sufficiently dependable.

Accepting sufficient dependability
reduces development cost and gives
us the measures against which we
can validate our safety claims.

Without an understanding of what
dependability is sufficient, we are
likely to produce a system that is
excessively complex, and hence
fault-ridden and prone to failure.

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 4

process is, not so much to guarantee a high quality product, but
specifically to provide the environment within which evidence supporting
safety claims for the product can be assessed.

Every safety case has at its heart claims of the sort “This system will do A
with level of dependability B under conditions C and, if it is unable to do A it
will move to its design safe state with probability P.” This claim with its
attendant caveats are laid out in the system's safety manual so that they can
be incorporated into the safety case of a higher-level system.

A system’s dependability is its ability to respond correctly to events in a
timely manner, for as long as required; that is, it is a combination of the
system’s availability (how often the system responds to requests in a timely
manner), and its reliability (how often these responses are correct). In other
words, a dependable system is a system that responds when it is required in
the time required, and responds correctly.

The safety case states the system’s dependability claims and provides the
evidence that it meets these claims. The limits of the dependability claims are
as important as the claims themselves.

For example, a flight control system may be designed to meet IEC 61508
SIL3 requirements for continuous operation not exceeding 20 hours, at which
time the system must be reset (rejuvenated). As long as the system in not
used in an aircraft that does not fly more than 20 hours, including a good
margin of error, this limit will pose no inconvenience. In fact, it allows design
and validation efforts to focus on ensuring greater dependability for 20 hours
rather than on extending the number of hours the system can be used and
remain dependable.

5. System failures
No system is immune to bugs, especially Heisenbugs2—mysterious bugs
that “appear”, then “disappear” when we look for them. Failures will occur:
build a system that will recover or move to its design safe state.

Fault A mistake in the code, which may or may not cause undesired
behavior.

Error Undesired behavior caused by a fault in the code.

Failure A system failure caused by an uncontained error.

Table 1. Faults, errors, and failures

EN 50128, for instance, explicitly states what is known to anyone who has
had to design or validate a safety-related software system: “There is no
known way to prove the absence of faults in reasonably complex safety-
related software”3. In other words, “When we build a safe system, we cannot

2 See Chris Hobbs. “Protecting Applications Against Heisenbugs”,

<www.qnx.com/download/feature.html?programid=21289>
3 BS EN 50128:2001 (incorporating corrigendum), May 2010, Introduction, p. 5.

http://www.qnx.com/download/feature.html?programid=21289

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 5

prove that the system contains no faults”; we can only “provide evidence to
support our claims that our system will be as dependable as we say it is.”4

Accepting that all systems will contain faults, and that faults may lead to
failures, a safe system must include multiple lines of defense:

Isolation of safety-critical processes—identify safety-critical components, and
design so that they cannot be compromised by other components.

Prevention of faults becoming errors—while the ideal solution is to identify
and remove faults from the code, this is impractical. Beware the
Heisenbug, and design so that faults are caught and encapsulated
before they become errors in the field.

Prevention of errors becoming failures—techniques such as replication and
diversification are less suitable to software than to hardware but can still
be valuable if used carefully.

Detection and recovery from failures—in many systems it is acceptable to
move to the pre-defined design safe state and leave recovery to a higher-
level system (for instance, a human). In some systems this is not practical
and either recovery or restart will be needed. In general, the crash-only
model followed by a fast reset may be preferred to an attempt to recover
in an ill-defined environment.

6. Validation
Testing is insufficient to prove dependability. Other methods are required:
formal design, statistical analysis, retrospective design validation, etc.

Testing can indirectly detect faults in the design or implementation by
uncovering the errors and failures that they can cause. Testing is of primary
importance in detecting and isolating Bohrbugs—solid, reproducible bugs
that remain unchanged even when a debugger is applied—but is of less use
when faced with Heisenbugs because the same fault manifests as different
errors each time it occurs.

4 Chris Hobbs, “The Limits of Testing in Safe Systems”, Electronic Design, 11 Nov.

2011. <electronicdesign.com/article/embedded/the-limits-of-testing-in-safe-systems>

http://electronicdesign.com/article/embedded/the-limits-of-testing-in-safe-systems

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 6

Figure 3. James Reason’s model (adapted) of how faults become failures applied to
software design and development.

To demonstrate that a system meets its safety claims, we must use testing
as just one of many techniques that include:

Static analysis—recommended by agencies such as the FDA and invaluable
for locating suspect code.5 It can include syntax checking against coding
standards, fault probability estimation, correctness proofs against
assertions in the code, and symbolic execution (static/dynamic hybrid).

Proven-in-use and prior-use data—essential for building dependability
claims, the in-use hours and failures resulting from this use should be
gathered throughout the product lifecycle: the larger the sample size, the
greater the confidence we can place in our claims.

Fault injection—deliberately introducing faults can both test code designed to
handle error detection and help estimate the number of remaining faults.
As with the analysis of random tests, the results of fault injections require
careful statistical analysis.

Formal and semi-formal design verification—traditionally done before
implementation; can also be performed retrospectively.

7. COTS and SOUP
It is permissible to use COTS, and even SOUP, if these components come
with sufficient evidence to support the overall system’s safety case.

5 FDA, Research Project: Static Analysis of Medical Device Software, updated 11 Feb.

2011.

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 7

The best way to build a safe software system is usually not to build
everything oneself as that will entail more risk than building a system with
selected COTS (commercial off-the-shelf) components. Building OSs,
communications stacks, and databases requires specialized knowledge and
the COTS equivalent may have the advantage of tens of millions of hours of
in-use history.

That said, COTS software is usually SOUP (software of uncertain
provenance) as far as the developer of the medical device is concerned, and
should therefore be treated with appropriate caution.

Both IEC 61508 and IEC 62304 assume that SOUP will be used.6 EN 50128
assumes the same, and stipulates that if COTS software is used in systems
requiring SIL 3 or SIL 4 “a strategy shall be defined to detect failures of the
COTS software and to protect the system from these failures”7 The trick is to
ensure that sufficient documented evidence is available to quantify the
implications of the SOUP for the system’s safety requirements.

This evidence will include proven-in-use data, fault histories, and other
historical data. We should request the source code and test plans, so we can
scrutinize the software with static code analysis tools.

The vendor should also make available the detailed processes used to build
the software, or a statement from an external auditor that confirms that the
processes used when designing and validating the COTS software were
suitable for the safety and regulatory requirements of the device in which this
software will be used.

6 IEC 61508-4, 3.2.8., IEC 62304, 5.1.1.
7 Ibid., Clause 9.4.5.

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 8

Figure 4. Detail from a system-level fault tree for a medical monitoring device. The
fault tree uses a Bayesian network, and can be seamlessly integrated into a
safety case, if the case is also prepared using Bayesian techniques.

8. Certified components and their vendors
Components with safety certifications, such as an OS certified to IEC 61508,
can speed development and validation, and facilitate approvals.

If COTS is used, advantage can be gained by employing components that
have received relevant approvals. Regulatory agencies may approve, not the
components but the entire system or device for market. (This is certainly the
case with the FDA, MHRA, Health Canada and their counterparts in other
jurisdictions). Nonetheless, components that have received certifications,
such as IEC 61508 can streamline the approval process and reduce time to
market.

In order to receive certification, a) these components must be developed in
an environment with appropriate processes and quality management, b) they
must undergo the proper testing and validation, and c) the COTS software
vendor must provide all the necessary artifacts, which in turn support the
approval case for the final device.

9. Auditors
The auditors are our friends. Engage them early on.

In the world of safe software development, certification auditors are our
friends. They understand how we need to establish our processes to obtain
the certifications, and they can help us structure our safety case. The earlier
we bring the auditors in to help us, the less we’ll have to revise, and the more
efficient our development cycle will be.

It is particularly useful to explore the proposed structure of the safety case
argument with the auditor before evidence has been added to it. If a notation
such as GSN or BBN is used to express the argument, clearly separating the
structure of the argument from the evidence, we can ask the auditor: “If we
present the evidence for this argument, would you be satisfied?” This
reduces the chances of surprise during an audit.

10. It doesn’t end with the product release
Our responsibility for a safe system does not end when the product is
released. It continues until the last device and the last system are retired.

The numbers below concern medical devices and are a little dated, but they
are eloquent: updates to software can compromise its integrity:

In a study the FDA conducted between 1992 and 1998, 242 out of 3,140 device
recalls (7.7 percent) were found to be due to faulty software. Of these, 192—

Ten Truths about building safe embedded software systems

QNX Software Systems Limited 9

almost 80 percent—were caused by defects introduced during software
maintenance.8

In other words, the faults were introduced after the devices had gone to
market. Hence, the processes we use to ensure that our software meets its
safety requirements must encompass the entire lifecycle of the software,
including fixes and updates.

Conclusion
A product development culture in which safety is fundamental in no way
guarantees that software will meet its dependability requirements, much less
receive the indispensable certifications and pre-market approvals. However,
a product developed and validated in a culture in which everyone from the
senior management to the technical editors reviewing the safety manual
understands just the ten truths we have noted above has a far better chance
of being successful than one for which safety was an afterthought—and it will
likely cost a lot less to develop, validate, and maintain.

8 Jackson, Daniel et al., eds., Software for Dependable Systems: Sufficient Evidence?

Washington: National Academies Press, 2007, p. 23.

About QNX Software Systems

QNX Software Systems Limited, a subsidiary of BlackBerry, is a leading vendor of
operating systems, development tools, and professional services for connected
embedded systems. Global leaders such as Audi, Cisco, General Electric,
Lockheed Martin, and Siemens depend on QNX technology for vehicle infotainment
units, network routers, medical devices, industrial automation systems, security and
defense systems, and other mission- or life-critical applications. Founded in 1980,
QNX Software Systems Limited is headquartered in Ottawa, Canada; its products
are distributed in more than 100 countries worldwide. Visit www.qnx.com and
facebook.com/QNXSoftwareSystems, and follow @QNX_News on Twitter. For more
information on the company's automotive work, visit qnxauto.blogspot.com and
follow @QNX_Auto.

www.qnx.com

© 2013 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino,
Aviage are trademarks of QNX Software Systems Limited, which are registered
trademarks and/or used in certain jurisdictions. All other trademarks belong to their
respective owners.

http://www.qnx.com/
https://www.facebook.com/QNXSoftwareSystems
http://twitter.com/QNX_News
http://qnxauto.blogspot.com/
http://twitter.com/QNX_Auto

