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Abstract 
Together, the speed of today’s high-performance 
processors and realtime patches for general-purpose 
OSs appear to have re-opened the question of whether 
embedded systems still need an RTOS. The answer 
hasn’t changed: the guarantees only a true RTOS can 
offer on relatively low-end processors mean that these 
OSs are here to stay in embedded environments. 

Introduction 
Do most embedded projects still need an RTOS? It’s a 
good question, given the speed of today’s high-
performance processors and the availability of realtime 
patches for Linux, Windows, and other general-
purpose operating systems (GPOSs). 

The answer lies in the very nature of embedded 
devices. Devices that are often manufactured in the 
thousands, or even millions, of units. Devices produced 
on a scale where even a $1 reduction in per-unit 
hardware costs can save the manufacturer a small 
fortune. Devices, in other words, that can’t afford the 
cost (not to mention the heat dissipation) of multi-
gigahertz processors. 

In the automotive telematics market, for instance, the 
typical 32-bit processor runs at about 600 MHz — far 
slower than the processors common in desktops and 
servers. In an environment such as this, an RTOS 
designed to extract extremely fast, predictable 
response times from lower-end hardware offers a 
serious economic advantage. 

Cost savings aside, the services provided by an RTOS 
make many computing problems easier to solve, 
particularly when multiple activities compete for a 
system’s resources. Consider, for instance, a system 
where users expect (or need) immediate response to 
input. With an RTOS, a developer can guarantee that 
operations initiated by the user will execute in 
preference to other system activities, unless a more 
important activity (for instance, an operation that helps 
protect the user’s safety) must execute first.  

Consider also a system that must satisfy quality of 
service (QoS) requirements, such as a device that 
presents live video. If the device depends on software 
for any part of its content delivery, it can experience 
dropped frames at a rate that users perceive as 
unacceptable—from the users’ perspective, the device 
is unreliable. With an RTOS, however, the developer 
can precisely control the order in which software 
processes execute and ensure that playback occurs at 
an appropriate and consistent media rate. 

RTOSs Aren’t “Fair” 
The need for “hard” real time—and for the RTOSs 
that enable it—remains prevalent in the embedded 
industry. The question is: what does an RTOS have 
that a GPOS doesn’t? And, how useful are the realtime 
extensions now available for some GPOSs? Can they 
provide a reasonable facsimile of RTOS performance? 

Let’s begin with task scheduling. In a GPOS, the 
scheduler typically uses a “fairness” policy to dispatch 
threads and processes onto the CPU. Such a policy 
enables the high overall throughput required by desktop 
and server applications, but it offers no assurances 
that high-priority, time-critical threads will execute in 
preference to lower-priority threads. 

For instance, a GPOS may decay the priority assigned 
to a high-priority thread, or otherwise dynamically 
adjust the thread’s priority in the interest of fairness to 
other threads in the system. A high-priority thread can, 
as a consequence, be preempted by threads of lower 
priority. In addition, most GPOSs have unbounded 
dispatch latencies: the more threads in the system, 
the longer it takes for the GPOS to schedule a thread 
for execution. Any one of these factors can cause a 
high-priority thread to miss its deadlines, even on a 
fast CPU. 

In an RTOS, on the other hand, threads execute in 
order of their priority. If a high-priority thread 
becomes ready to run, it can, within a small and 
bounded time interval, take over the CPU from any 
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lower-priority thread that may be executing. Moreover, 
the high-priority thread can run uninterrupted until it 
has finished what it needs to do—unless, of course, it 
is pre-empted by an even higher-priority thread. This 
approach, known as priority-based preemptive 
scheduling, allows high-priority threads to meet their 
deadlines consistently, even when many other threads 
are competing for CPU time. 

Preemptible Kernel 
In most GPOSs, the OS kernel isn’t preemptible. 
Consequently, a high-priority user thread can never 
preempt a kernel call, but must instead wait for the 
entire call to complete — even if the call was invoked 
by the lowest-priority process in the system. Moreover, 
all priority information is usually lost when a driver or 
other system service, usually performed in a kernel 
call, exe-cutes on behalf of a client thread. Such 
behavior causes unpredictable delays and prevents 
critical activities from completing on time. 

In an RTOS, on the other hand, kernel operations are 
preemptible. As in a GPOS, there are time windows 
during which preemption may not occur, though in a 
well-designed RTOS, these windows are extremely 
brief, often in the order of hundreds of nanoseconds. 
Moreover, the RTOS imposes an upper bound on how 
long preemption is held off and interrupts disabled; this 
upper bound allows developers to ascertain worst-case 
latencies. 

To realize this goal of consistent predictability and 
timely completion of critical activities, the RTOS kernel 
must be simple and elegant as possible. The best way 
to achieve this simplicity is to design a kernel that 
includes only services with a short execution path. By 
excluding work-intensive operations (such as process 
loading) from the kernel and assigning them to 
external processes or threads, the RTOS designer can 
help ensure that there is an upper bound on the 
longest non-preemptible code path through the kernel. 

In a few GPOSs, some degree of preemptibility has 
been added to the kernel. However, the intervals during 
which preemption may not occur are still much longer 
than those in a typical RTOS; the length of any such 
preemption interval will depend on the longest critical 
section of any modules (for instance, networking) 
incorporated into the GPOS kernel. Moreover, a 
preemptible GPOS kernel doesn’t address other 
conditions that can impose unbounded latencies, 

such as the loss of priority information that occurs 
when a client invokes a driver or other system service.  

Avoiding Priority Inversion 
In a GPOS, and even in an RTOS, a lower-priority thread 
can inadvertently prevent a higher-priority thread from 
accessing the CPU—a condition known as priority 
inversion. When an unbounded priority inversion 
occurs, critical deadlines can be missed, resulting in 
outcomes that range from unusual system behavior to 
outright failure. Unfortunately, priority inversion is often 
overlooked during system design. Many examples of 
priority inversion exist, including one that plagued the 
Mars Pathfinder project in July 1997.1  

Generally speaking, priority inversion occurs when two 
tasks of differing priority share a resource, and the 
higher-priority task cannot obtain the resource from the 
lower-priority task. To prevent this condition from 
exceeding a bounded interval of time, an RTOS may 
provide a choice of mechanisms unavailable in a 
GPOS, including priority inheritance and priority ceiling 
emulation. We couldn’t possibly do justice to both 
mechanisms here, so let’s focus on an example of 
priority inheritance.  

To begin, we must consider how task synchronization 
can result in blocking, and how this blocking can, in 
turn, cause priority inversion. Let's say two jobs are 
running, Job 1 and Job 2, and that Job 1 has the higher 
priority. If Job 1 is ready to execute, but must wait for 
Job 2 to complete an activity, we have blocking. This 
blocking may occur because of synchronization; for 
instance, Job 1 and Job 2 share a resource controlled 
by a lock or semaphore, and Job 1 is waiting for Job 2 
to unlock the resource. Or, it may occur because Job 
1 is requesting a service currently used by Job 2. 

The blocking allows Job 2 to run until the condition that 
Job 1 is waiting for occurs (for instance, Job 2 unlocks 
the resource that both jobs share). At that point, Job 1 
gets to execute. The total time that Job 1 must wait is 
known as the blocking factor. If Job 1 is to meet any of 
its timeliness constraints, this blocking factor can’t 
vary according to any parameter, such as the number 
of threads or an input into the system. In other words, 
the blocking factor must be bounded. 

                                                        
1 Barr, Michael. “Introduction to Priority Inversion," 

Embedded Systems Programming, Volume 15: Number 4, 
April 2002. 
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Now let’s introduce a third job—Job 3—that has a 
higher priority than Job 2 but a lower priority than Job 
1 (see Figure 1 ). If Job 3 becomes ready to run while 
Job 2 is executing, it will preempt Job 2, and Job 2 
won’t be able to run again until Job 3 blocks or 
completes. This new job will, of course, increase the 
blocking factor of Job 1; that is, it will further delay 
Job 1 from executing. The total delay introduced by 
the preemption is a priority inversion.  

 

Figure 1. Job 1 is waiting for Job 2 to complete an activity, 
when Job 3 preempts Job 2. This new job further delays 
Job 1 from executing 

 

Figure 2. Job 2 inherits Job 1’s higher priority, thereby 
preventing Job 3 from preempting Job 2. Job 3 no longer 
delays Job 1 from executing. 

In fact, multiple jobs can preempt Job 2 in this way, 
resulting in an effect known as chain blocking. Under 
such circumstances, Job 2 might be preempted for an 
indefinite period of time, yielding an unbounded 
priority inversion and causing Job 1 to fail to meet any 
of its deadlines. 

This is where priority inheritance comes in. If we 
return to our scenario and make Job 2 run at the 
priority of Job 1 during the synchronization period, 
then Job 3 won’t be able to preempt Job 2, and the 
resulting priority inversion is avoided (see Figure 2).   

Partitioning Schedulers 
For many systems, guaranteeing resource availability is 
critical. If a key subsystem is deprived of, say, CPU 
cycles, the services provided by that subsystem 
becomes unavailable to users. In a denial-of-service 
(DoS) attack, for instance, a malicious user could 
bombard a system with requests that need to be 
handled by a high-priority process. This process could 
then overload the CPU and starve other processes of 
CPU cycles, making the system unavailable to users. 

A security breach isn’t the only cause of process 
starvation. In many cases, adding software 
functionality to a system can push it “over the brink” 
and starve existing applications of CPU time. 
Applications or services that were functioning in a 
timely manner no longer respond as expected or 
required. Historically, the only solution to this problem 
was to either retrofit hardware or to recode (or 
redesign) software—both undesirable alternatives. 

To address these problems, systems designers need a 
partitioning scheme that enforces CPU budgets, either 
through hardware or software, to prevent processes 
or threads from monopolizing CPU cycles needed by 
other processes or threads. Since an RTOS already 
provides centralized access to the CPU, memory, and 
other computing resources, an RTOS is an excellent 
candidate to enforce CPU partition budgets. 

Some RTOSs offer a fixed partition scheduler. Using this 
scheduler, the system designer can divide tasks into 
groups, or partitions, and allocate a percentage of CPU 
time to each partition. With this approach, no task in 
any given partition can consume more than the 
partition's statically defined percentage of CPU time. 
For instance, let's say a partition is allocated 30% of 
the CPU. If a process in that partition subsequently 
becomes the target of a denial of service attack, it will 
consume no more than 30% of CPU time. This 
allocated limit allows other partitions to maintain their 
availability; for instance, it can ensure that the user 
interface (e.g. a remote terminal) remains accessible. 
As a result, operators can access the system and 
resolve the problem—without having to hit the reset 
switch. 
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Nonetheless, there is a problem with this approach. 
Because the scheduling algorithm is fixed, a partition 
can never use CPU cycles allocated to other partitions, 
even if those partitions haven't used their allotted cycles. 
This approach squanders CPU cycles and prevents the 
system from handling peak demands. Systems 
designers must, as a result, use more-expensive 
processors, tolerate a slower system, or restrict the 
amount of functionality that the system can support. 

Adaptive partitioning  
Another partitioning scheme, called adaptive 
partitioning, addresses the drawbacks of static 
partitions by providing a more dynamic scheduling 
algorithm. Like static partitioning, adaptive partitioning 
allows the system designer to reserve CPU cycles for a 
process or group of processes. The designer can thus 
guarantee that the load on one subsystem or partition 
won’t affect the availability of other subsystems. Unlike 
static approaches, however, adaptive partitioning can 
dynamically reassign CPU cycles from partitions that 
aren’t busy to partitions that can benefit from extra 
processing time—partition budgets are enforced only 
when the CPU is fully loaded. As a result, the system 
can handle peak 
demands and achieve 
100% utilization, while 
still enjoying the 
benefits of resource 
guarantees. 

Just as importantly, 
adaptive partitioning 
can be overlaid on top 
of an existing system 
without code redesign 
or modifications. In the 
QNX® Neutrino® RTOS, 
for example, a system 
designer can simply 
launch existing POSIX-
based applications in 
partitions, and the RTOS 
scheduler ensures that 
each partition receives 
its allocated budget. 
Within each partition, 
each task continues to 
be scheduled according 
to the rules of priority-
based preemptive 

scheduling—applications don’t have to change their 
scheduling behavior. Moreover, the designer can 
dynamically reconfigure the partitions to fine-tune the 
system for optimal performance. 

“Dualing” Kernels 
GPOSs—including Linux, Windows, and various flavors 
of Unix—typically lack the realtime mechanisms 
discussed thus far. In an attempt to fill the gap, GPOS 
vendors have developed a number of realtime 
extensions and patches. There is, for example, the 
dual-kernel approach, in which the GPOS runs as a 
task on top of a dedicated realtime kernel (see 
Figure 4). All tasks that require deterministic 
scheduling run in this kernel, but at a higher priority 
than the GPOS. These tasks can thus preempt the 
GPOS whenever they need to execute, and yield the 
CPU to the GPOS only when their work is done. 

Unfortunately, tasks running in the realtime kernel can 
make only limited use of existing system services in 
the GPOS — file systems, networking, and so on. In 
fact, if a realtime task calls out to the GPOS for any 
service, this task is subject to the same preemption 

 

Figure 3. Adaptive partitioning prevents high-priority tasks from consuming more than their 
assigned CPU percentage, unless the system contains unused CPU cycles. For instance, tasks A 
and D can run in time allocated to Partition 3 because tasks E and F don't require the rest of 
their budgeted CPU cycles.  
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problems that prohibit GPOS processes from behaving 
deterministically. As a result, new drivers and system 
services must be created specifically for the realtime 
kernel, even when equivalent services already exist for 
the GPOS. Also, tasks running in the realtime kernel 
don’t benefit from the robust MMU-protected 
environment that most GPOSs provide for regular, 
non-realtime processes. Instead, they run unprotected 
in kernel space. Consequently, a realtime task that 
contains a common coding error, such as a corrupt C 
pointer, can easily cause a fatal kernel fault. That’s a 
problem, since most systems that need real time also 
demand a very high degree of reliability. 

To complicate matters, different implementations of 
the dual-kernel approach use different APIs. In most 
cases, services written for the GPOS can’t easily be 
ported to the realtime kernel, and tasks written for one 
vendor’s realtime extensions may not run on another 
vendor’s extensions. 

 
 

Figure 4. In a typical dual-kernel implementation, the 
GPOS runs as the lowest-priority task in a separate realtime 
kernel. 

Such solutions point to the real difficulty, and 
immense scope, of making a GPOS capable of 
supporting realtime behavior. This isn’t a matter of 
“RTOS good, GPOS bad,” however. GPOSs such as 
Linux, Windows, and the various Unixes all function 
very well as desktop or server OSs. They fall short, 
however, when forced into deterministic environments 
that they weren’t designed for—environments such as 
in-car telematics units, medical instruments, realtime 
control systems, and continuous media applications. 

Extending the RTOS 
for Application-specific Requirements 
Whatever their shortcomings in deterministic 
environments, there are, nonetheless, benefits to using 

GPOSs. These benefits include support for widely used 
APIs and, in the case of Linux, the open source model. 
With open source, a developer can customize OS 
components for application-specific demands and 
save considerable time troubleshooting. The RTOS 
vendor can’t afford to ignore these benefits. Extensive 
support for POSIX APIs—the same APIs used by Linux 
and various flavors of Unix—is an important first step. 
So is providing well-documented source code and 
customization kits that address the specific needs 
and design challenges of embedded developers. 

The architecture of the RTOS also comes into play. An 
RTOS based on a microkernel design, for instance, can 
make the job of OS customization fundamentally 
easier to achieve than with other architectures. In a 
microkernel RTOS, only a small core of fundamental 
OS services (for instance, signals, timers, scheduling) 
reside in the kernel itself. All other components—
drivers, file systems, protocol stacks, applications—
run outside the kernel as separate, memory-
protected processes (see Figure 5). As a result, 
developing custom drivers and other application-
specific OS extensions doesn’t require specialized 
kernel debuggers or kernel gurus. In fact, as user-
space programs, such extensions become as easy to 
develop as standard applications, since they can be 
debugged with standard source-level tools and 
techniques. 

For instance, if a device driver attempts to access 
memory outside its process container, the OS can 
identify the process responsible, indicate the location of 
the fault, and create a process dump file viewable with 
source-level debugging tools. The dump file can 
include all the information the debugger needs to 
identify the source line that caused the problem, along 
with diagnostic information such as the contents of 
data items and a history of function calls. 

Such an architecture also provides superior fault 
isolation and recovery: if a driver, protocol stack, or 
other system service fails, it can do so without 
corrupting other services, or the OS kernel. In fact, 
“software watchdogs” can continuously monitor for 
such events and restart the offending service 
dynamically, without resetting the entire system or 
involving the user in any way. Similarly, drivers and 
other services can be dynamically stopped, started, or 
upgraded, again without a system shutdown. 
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Figure 5. In a microkernel RTOS, system services run as 
standard, user-space processes, simplifying the task of OS 
customization. 

These benefits shouldn’t be taken lightly—the biggest 
disruption that can occur to realtime performance is 
an unscheduled system reboot! Even a scheduled 
reboot to incorporate software upgrades disrupts 
operation, though in a controlled manner. To ensure 
that deadlines are always met, developers must use an 
OS that can remain continuously available, even in the 
event of software faults or service upgrades. 

A Strategic Decision 
An RTOS can help make complex applications both 
predictable and reliable; in fact, the precise control 
over timing made possible by an RTOS adds a form of 
reliability that cannot  
be achieved with a GPOS. (If a system based on a 
GPOS doesn’t behave correctly due to incorrect timing 
behavior, then we can justifiably say that the system is 
unreliable.) Still, choosing the right RTOS can itself be 
a complex task. The underlying architecture of an 
RTOS is an important criterion, but so are other 
factors. These include: 

• Flexible choice of scheduling algorithms — Does 
the RTOS support a choice of scheduling 
algorithms (FIFO, round robin, sporadic, etc.)? 
Can the developer assign algorithms on a per-
thread basis, or does the RTOS force him into 

assigning one algorithm to all threads in the 
system? 

• Time partitioning — Does the RTOS support time 
partitioning, which can provide processes with a 
guaranteed percentage of CPU cycles? Such 
guarantees simplify the job of integrating 
subsystems from multiple development teams or 
vendors. They can also ensure that critical tasks 
remain available and meet their deadlines, even 
when the system is subjected to denial of service 
(DoS) attacks and other malicious exploits. 

• Support for multi-core processors — The ability to 
migrate to multi-core processors has become 
essential for a variety of high-performance 
designs. Does the RTOS support a choice of multi-
processing models (symmetric multiprocessing, 
asymmetric multi-processing, bound 
multiprocessing) to help developers take best 
advantage of multi-core hardware? And is the RTOS 
supported by system-tracing tools that let 
developers diagnose and optimize the performance 
of a multi-core system? Without tools that can 
highlight resource contention, excessive thread 
migration, and other problems common to multi-
core designs, optimizing a multi-core system can 
quickly become an onerous, time-consuming task.  

• Tools for remote diagnostics — Because 
downtime is intolerable for many embedded 
systems, the RTOS vendor should provide 
diagnostics tools that can analyze a system’s 
behavior without interrupting services that the 
system provides. Look for a vendor that offers 
runtime analysis tools for system profiling, 
application profiling, and memory analysis. 

• Open development platform — Does the RTOS 
vendor provide a development environment based 
on an open platform like Eclipse, which permits 
developers to  “plug in” their favorite third-party 
tools for modeling, version control, and so on? Or 
is the development environment based on 
proprietary technology? 

• Graphical user interfaces — Does the RTOS use 
primitive graphics libraries or does it support 
multiple HMI technologies (HTML5, Qt, OpenGL 
ES, etc.) and provide advanced graphics 
capabilities such as multi-layer interfaces, multi-
headed displays, accelerated 3D rendering, and a 
true windowing system? Can the look-and-feel of 
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GUIs be easily customized? Can the GUIs display 
and input multiple languages (Chinese, Korean, 
Japanese, English, Russian, etc.) simultaneously? 
Can 2D and 3D applications easily share the same 
screen? 

• Standard APIs — Does the RTOS lock developers 
into a proprietary API, or does it provide certified 
support for standard APIs such as POSIX and 
OpenGL ES, which make it easier to port code to 
and from other environments? Also, does the 
RTOS offer comprehensive support for the API, 
or does it support only a small subset of the 
defined interfaces? 

• Middleware for digital media — Flexible support 
for digital media is becoming a design requirement 
for an array of embedded systems, including car 
radios, medical devices, industrial control systems, 
media servers, and, of course, consumer 

electronics. A system may need to handle multiple 
media sources (device, streaming, etc.), 
understand multiple data formats, and support a 
variety of DRM schemes. By providing well-
designed middleware for digital media, an RTOS 
vendor can eliminate the considerable software 
effort needed to connect to multiple media 
sources, organize the data, and initiate proper 
data-processing paths. Moreover, a well-designed 
middleware solution will have the flexibility to 
support new data sources, such as a next-
generation iPod, without requiring modifications 
to the user interface or to other software 
components. 

Choosing an RTOS is a strategic decision for any 
project team. Once an RTOS vendor has provided 
clear answers to the above questions, you’ll be much 
closer to choosing the RTOS that’s right for you now—
and in the future. 
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