

Exactly When Do You Need an RTOS?
Paul Leroux, Technology Analyst
QNX Software Systems
paull@qnx.com

Abstract
Together, the speed of today’s high-performance
processors and realtime patches for general-purpose
OSs appear to have re-opened the question of whether
embedded systems still need an RTOS. The answer
hasn’t changed: the guarantees only a true RTOS can
offer on relatively low-end processors mean that these
OSs are here to stay in embedded environments.

Introduction
Do most embedded projects still need an RTOS? It’s a
good question, given the speed of today’s high-
performance processors and the availability of realtime
patches for Linux, Windows, and other general-
purpose operating systems (GPOSs).

The answer lies in the very nature of embedded
devices. Devices that are often manufactured in the
thousands, or even millions, of units. Devices produced
on a scale where even a $1 reduction in per-unit
hardware costs can save the manufacturer a small
fortune. Devices, in other words, that can’t afford the
cost (not to mention the heat dissipation) of multi-
gigahertz processors.

In the automotive telematics market, for instance, the
typical 32-bit processor runs at about 600 MHz — far
slower than the processors common in desktops and
servers. In an environment such as this, an RTOS
designed to extract extremely fast, predictable
response times from lower-end hardware offers a
serious economic advantage.

Cost savings aside, the services provided by an RTOS
make many computing problems easier to solve,
particularly when multiple activities compete for a
system’s resources. Consider, for instance, a system
where users expect (or need) immediate response to
input. With an RTOS, a developer can guarantee that
operations initiated by the user will execute in
preference to other system activities, unless a more
important activity (for instance, an operation that helps
protect the user’s safety) must execute first.

Consider also a system that must satisfy quality of
service (QoS) requirements, such as a device that
presents live video. If the device depends on software
for any part of its content delivery, it can experience
dropped frames at a rate that users perceive as
unacceptable—from the users’ perspective, the device
is unreliable. With an RTOS, however, the developer
can precisely control the order in which software
processes execute and ensure that playback occurs at
an appropriate and consistent media rate.

RTOSs Aren’t “Fair”
The need for “hard” real time—and for the RTOSs
that enable it—remains prevalent in the embedded
industry. The question is: what does an RTOS have
that a GPOS doesn’t? And, how useful are the realtime
extensions now available for some GPOSs? Can they
provide a reasonable facsimile of RTOS performance?

Let’s begin with task scheduling. In a GPOS, the
scheduler typically uses a “fairness” policy to dispatch
threads and processes onto the CPU. Such a policy
enables the high overall throughput required by desktop
and server applications, but it offers no assurances
that high-priority, time-critical threads will execute in
preference to lower-priority threads.

For instance, a GPOS may decay the priority assigned
to a high-priority thread, or otherwise dynamically
adjust the thread’s priority in the interest of fairness to
other threads in the system. A high-priority thread can,
as a consequence, be preempted by threads of lower
priority. In addition, most GPOSs have unbounded
dispatch latencies: the more threads in the system,
the longer it takes for the GPOS to schedule a thread
for execution. Any one of these factors can cause a
high-priority thread to miss its deadlines, even on a
fast CPU.

In an RTOS, on the other hand, threads execute in
order of their priority. If a high-priority thread
becomes ready to run, it can, within a small and
bounded time interval, take over the CPU from any

Exactly When Do You Need and RTOS? QNX Software Systems

2

lower-priority thread that may be executing. Moreover,
the high-priority thread can run uninterrupted until it
has finished what it needs to do—unless, of course, it
is pre-empted by an even higher-priority thread. This
approach, known as priority-based preemptive
scheduling, allows high-priority threads to meet their
deadlines consistently, even when many other threads
are competing for CPU time.

Preemptible Kernel
In most GPOSs, the OS kernel isn’t preemptible.
Consequently, a high-priority user thread can never
preempt a kernel call, but must instead wait for the
entire call to complete — even if the call was invoked
by the lowest-priority process in the system. Moreover,
all priority information is usually lost when a driver or
other system service, usually performed in a kernel
call, exe-cutes on behalf of a client thread. Such
behavior causes unpredictable delays and prevents
critical activities from completing on time.

In an RTOS, on the other hand, kernel operations are
preemptible. As in a GPOS, there are time windows
during which preemption may not occur, though in a
well-designed RTOS, these windows are extremely
brief, often in the order of hundreds of nanoseconds.
Moreover, the RTOS imposes an upper bound on how
long preemption is held off and interrupts disabled; this
upper bound allows developers to ascertain worst-case
latencies.

To realize this goal of consistent predictability and
timely completion of critical activities, the RTOS kernel
must be simple and elegant as possible. The best way
to achieve this simplicity is to design a kernel that
includes only services with a short execution path. By
excluding work-intensive operations (such as process
loading) from the kernel and assigning them to
external processes or threads, the RTOS designer can
help ensure that there is an upper bound on the
longest non-preemptible code path through the kernel.

In a few GPOSs, some degree of preemptibility has
been added to the kernel. However, the intervals during
which preemption may not occur are still much longer
than those in a typical RTOS; the length of any such
preemption interval will depend on the longest critical
section of any modules (for instance, networking)
incorporated into the GPOS kernel. Moreover, a
preemptible GPOS kernel doesn’t address other
conditions that can impose unbounded latencies,

such as the loss of priority information that occurs
when a client invokes a driver or other system service.

Avoiding Priority Inversion
In a GPOS, and even in an RTOS, a lower-priority thread
can inadvertently prevent a higher-priority thread from
accessing the CPU—a condition known as priority
inversion. When an unbounded priority inversion
occurs, critical deadlines can be missed, resulting in
outcomes that range from unusual system behavior to
outright failure. Unfortunately, priority inversion is often
overlooked during system design. Many examples of
priority inversion exist, including one that plagued the
Mars Pathfinder project in July 1997.1

Generally speaking, priority inversion occurs when two
tasks of differing priority share a resource, and the
higher-priority task cannot obtain the resource from the
lower-priority task. To prevent this condition from
exceeding a bounded interval of time, an RTOS may
provide a choice of mechanisms unavailable in a
GPOS, including priority inheritance and priority ceiling
emulation. We couldn’t possibly do justice to both
mechanisms here, so let’s focus on an example of
priority inheritance.

To begin, we must consider how task synchronization
can result in blocking, and how this blocking can, in
turn, cause priority inversion. Let's say two jobs are
running, Job 1 and Job 2, and that Job 1 has the higher
priority. If Job 1 is ready to execute, but must wait for
Job 2 to complete an activity, we have blocking. This
blocking may occur because of synchronization; for
instance, Job 1 and Job 2 share a resource controlled
by a lock or semaphore, and Job 1 is waiting for Job 2
to unlock the resource. Or, it may occur because Job
1 is requesting a service currently used by Job 2.

The blocking allows Job 2 to run until the condition that
Job 1 is waiting for occurs (for instance, Job 2 unlocks
the resource that both jobs share). At that point, Job 1
gets to execute. The total time that Job 1 must wait is
known as the blocking factor. If Job 1 is to meet any of
its timeliness constraints, this blocking factor can’t
vary according to any parameter, such as the number
of threads or an input into the system. In other words,
the blocking factor must be bounded.

1 Barr, Michael. “Introduction to Priority Inversion,"

Embedded Systems Programming, Volume 15: Number 4,
April 2002.

QNX Software Systems Exactly When Do You Need and RTOS?

 3

Now let’s introduce a third job—Job 3—that has a
higher priority than Job 2 but a lower priority than Job
1 (see Figure 1). If Job 3 becomes ready to run while
Job 2 is executing, it will preempt Job 2, and Job 2
won’t be able to run again until Job 3 blocks or
completes. This new job will, of course, increase the
blocking factor of Job 1; that is, it will further delay
Job 1 from executing. The total delay introduced by
the preemption is a priority inversion.

Figure 1. Job 1 is waiting for Job 2 to complete an activity,
when Job 3 preempts Job 2. This new job further delays
Job 1 from executing

Figure 2. Job 2 inherits Job 1’s higher priority, thereby
preventing Job 3 from preempting Job 2. Job 3 no longer
delays Job 1 from executing.

In fact, multiple jobs can preempt Job 2 in this way,
resulting in an effect known as chain blocking. Under
such circumstances, Job 2 might be preempted for an
indefinite period of time, yielding an unbounded
priority inversion and causing Job 1 to fail to meet any
of its deadlines.

This is where priority inheritance comes in. If we
return to our scenario and make Job 2 run at the
priority of Job 1 during the synchronization period,
then Job 3 won’t be able to preempt Job 2, and the
resulting priority inversion is avoided (see Figure 2).

Partitioning Schedulers
For many systems, guaranteeing resource availability is
critical. If a key subsystem is deprived of, say, CPU
cycles, the services provided by that subsystem
becomes unavailable to users. In a denial-of-service
(DoS) attack, for instance, a malicious user could
bombard a system with requests that need to be
handled by a high-priority process. This process could
then overload the CPU and starve other processes of
CPU cycles, making the system unavailable to users.

A security breach isn’t the only cause of process
starvation. In many cases, adding software
functionality to a system can push it “over the brink”
and starve existing applications of CPU time.
Applications or services that were functioning in a
timely manner no longer respond as expected or
required. Historically, the only solution to this problem
was to either retrofit hardware or to recode (or
redesign) software—both undesirable alternatives.

To address these problems, systems designers need a
partitioning scheme that enforces CPU budgets, either
through hardware or software, to prevent processes
or threads from monopolizing CPU cycles needed by
other processes or threads. Since an RTOS already
provides centralized access to the CPU, memory, and
other computing resources, an RTOS is an excellent
candidate to enforce CPU partition budgets.

Some RTOSs offer a fixed partition scheduler. Using this
scheduler, the system designer can divide tasks into
groups, or partitions, and allocate a percentage of CPU
time to each partition. With this approach, no task in
any given partition can consume more than the
partition's statically defined percentage of CPU time.
For instance, let's say a partition is allocated 30% of
the CPU. If a process in that partition subsequently
becomes the target of a denial of service attack, it will
consume no more than 30% of CPU time. This
allocated limit allows other partitions to maintain their
availability; for instance, it can ensure that the user
interface (e.g. a remote terminal) remains accessible.
As a result, operators can access the system and
resolve the problem—without having to hit the reset
switch.

Exactly When Do You Need and RTOS? QNX Software Systems

4

Nonetheless, there is a problem with this approach.
Because the scheduling algorithm is fixed, a partition
can never use CPU cycles allocated to other partitions,
even if those partitions haven't used their allotted cycles.
This approach squanders CPU cycles and prevents the
system from handling peak demands. Systems
designers must, as a result, use more-expensive
processors, tolerate a slower system, or restrict the
amount of functionality that the system can support.

Adaptive partitioning
Another partitioning scheme, called adaptive
partitioning, addresses the drawbacks of static
partitions by providing a more dynamic scheduling
algorithm. Like static partitioning, adaptive partitioning
allows the system designer to reserve CPU cycles for a
process or group of processes. The designer can thus
guarantee that the load on one subsystem or partition
won’t affect the availability of other subsystems. Unlike
static approaches, however, adaptive partitioning can
dynamically reassign CPU cycles from partitions that
aren’t busy to partitions that can benefit from extra
processing time—partition budgets are enforced only
when the CPU is fully loaded. As a result, the system
can handle peak
demands and achieve
100% utilization, while
still enjoying the
benefits of resource
guarantees.

Just as importantly,
adaptive partitioning
can be overlaid on top
of an existing system
without code redesign
or modifications. In the
QNX® Neutrino® RTOS,
for example, a system
designer can simply
launch existing POSIX-
based applications in
partitions, and the RTOS
scheduler ensures that
each partition receives
its allocated budget.
Within each partition,
each task continues to
be scheduled according
to the rules of priority-
based preemptive

scheduling—applications don’t have to change their
scheduling behavior. Moreover, the designer can
dynamically reconfigure the partitions to fine-tune the
system for optimal performance.

“Dualing” Kernels
GPOSs—including Linux, Windows, and various flavors
of Unix—typically lack the realtime mechanisms
discussed thus far. In an attempt to fill the gap, GPOS
vendors have developed a number of realtime
extensions and patches. There is, for example, the
dual-kernel approach, in which the GPOS runs as a
task on top of a dedicated realtime kernel (see
Figure 4). All tasks that require deterministic
scheduling run in this kernel, but at a higher priority
than the GPOS. These tasks can thus preempt the
GPOS whenever they need to execute, and yield the
CPU to the GPOS only when their work is done.

Unfortunately, tasks running in the realtime kernel can
make only limited use of existing system services in
the GPOS — file systems, networking, and so on. In
fact, if a realtime task calls out to the GPOS for any
service, this task is subject to the same preemption

Figure 3. Adaptive partitioning prevents high-priority tasks from consuming more than their
assigned CPU percentage, unless the system contains unused CPU cycles. For instance, tasks A
and D can run in time allocated to Partition 3 because tasks E and F don't require the rest of
their budgeted CPU cycles.

QNX Software Systems Exactly When Do You Need and RTOS?

 5

problems that prohibit GPOS processes from behaving
deterministically. As a result, new drivers and system
services must be created specifically for the realtime
kernel, even when equivalent services already exist for
the GPOS. Also, tasks running in the realtime kernel
don’t benefit from the robust MMU-protected
environment that most GPOSs provide for regular,
non-realtime processes. Instead, they run unprotected
in kernel space. Consequently, a realtime task that
contains a common coding error, such as a corrupt C
pointer, can easily cause a fatal kernel fault. That’s a
problem, since most systems that need real time also
demand a very high degree of reliability.

To complicate matters, different implementations of
the dual-kernel approach use different APIs. In most
cases, services written for the GPOS can’t easily be
ported to the realtime kernel, and tasks written for one
vendor’s realtime extensions may not run on another
vendor’s extensions.

Figure 4. In a typical dual-kernel implementation, the
GPOS runs as the lowest-priority task in a separate realtime
kernel.

Such solutions point to the real difficulty, and
immense scope, of making a GPOS capable of
supporting realtime behavior. This isn’t a matter of
“RTOS good, GPOS bad,” however. GPOSs such as
Linux, Windows, and the various Unixes all function
very well as desktop or server OSs. They fall short,
however, when forced into deterministic environments
that they weren’t designed for—environments such as
in-car telematics units, medical instruments, realtime
control systems, and continuous media applications.

Extending the RTOS
for Application-specific Requirements
Whatever their shortcomings in deterministic
environments, there are, nonetheless, benefits to using

GPOSs. These benefits include support for widely used
APIs and, in the case of Linux, the open source model.
With open source, a developer can customize OS
components for application-specific demands and
save considerable time troubleshooting. The RTOS
vendor can’t afford to ignore these benefits. Extensive
support for POSIX APIs—the same APIs used by Linux
and various flavors of Unix—is an important first step.
So is providing well-documented source code and
customization kits that address the specific needs
and design challenges of embedded developers.

The architecture of the RTOS also comes into play. An
RTOS based on a microkernel design, for instance, can
make the job of OS customization fundamentally
easier to achieve than with other architectures. In a
microkernel RTOS, only a small core of fundamental
OS services (for instance, signals, timers, scheduling)
reside in the kernel itself. All other components—
drivers, file systems, protocol stacks, applications—
run outside the kernel as separate, memory-
protected processes (see Figure 5). As a result,
developing custom drivers and other application-
specific OS extensions doesn’t require specialized
kernel debuggers or kernel gurus. In fact, as user-
space programs, such extensions become as easy to
develop as standard applications, since they can be
debugged with standard source-level tools and
techniques.

For instance, if a device driver attempts to access
memory outside its process container, the OS can
identify the process responsible, indicate the location of
the fault, and create a process dump file viewable with
source-level debugging tools. The dump file can
include all the information the debugger needs to
identify the source line that caused the problem, along
with diagnostic information such as the contents of
data items and a history of function calls.

Such an architecture also provides superior fault
isolation and recovery: if a driver, protocol stack, or
other system service fails, it can do so without
corrupting other services, or the OS kernel. In fact,
“software watchdogs” can continuously monitor for
such events and restart the offending service
dynamically, without resetting the entire system or
involving the user in any way. Similarly, drivers and
other services can be dynamically stopped, started, or
upgraded, again without a system shutdown.

Exactly When Do You Need and RTOS? QNX Software Systems

6

Figure 5. In a microkernel RTOS, system services run as
standard, user-space processes, simplifying the task of OS
customization.

These benefits shouldn’t be taken lightly—the biggest
disruption that can occur to realtime performance is
an unscheduled system reboot! Even a scheduled
reboot to incorporate software upgrades disrupts
operation, though in a controlled manner. To ensure
that deadlines are always met, developers must use an
OS that can remain continuously available, even in the
event of software faults or service upgrades.

A Strategic Decision
An RTOS can help make complex applications both
predictable and reliable; in fact, the precise control
over timing made possible by an RTOS adds a form of
reliability that cannot
be achieved with a GPOS. (If a system based on a
GPOS doesn’t behave correctly due to incorrect timing
behavior, then we can justifiably say that the system is
unreliable.) Still, choosing the right RTOS can itself be
a complex task. The underlying architecture of an
RTOS is an important criterion, but so are other
factors. These include:

• Flexible choice of scheduling algorithms — Does
the RTOS support a choice of scheduling
algorithms (FIFO, round robin, sporadic, etc.)?
Can the developer assign algorithms on a per-
thread basis, or does the RTOS force him into

assigning one algorithm to all threads in the
system?

• Time partitioning — Does the RTOS support time
partitioning, which can provide processes with a
guaranteed percentage of CPU cycles? Such
guarantees simplify the job of integrating
subsystems from multiple development teams or
vendors. They can also ensure that critical tasks
remain available and meet their deadlines, even
when the system is subjected to denial of service
(DoS) attacks and other malicious exploits.

• Support for multi-core processors — The ability to
migrate to multi-core processors has become
essential for a variety of high-performance
designs. Does the RTOS support a choice of multi-
processing models (symmetric multiprocessing,
asymmetric multi-processing, bound
multiprocessing) to help developers take best
advantage of multi-core hardware? And is the RTOS
supported by system-tracing tools that let
developers diagnose and optimize the performance
of a multi-core system? Without tools that can
highlight resource contention, excessive thread
migration, and other problems common to multi-
core designs, optimizing a multi-core system can
quickly become an onerous, time-consuming task.

• Tools for remote diagnostics — Because
downtime is intolerable for many embedded
systems, the RTOS vendor should provide
diagnostics tools that can analyze a system’s
behavior without interrupting services that the
system provides. Look for a vendor that offers
runtime analysis tools for system profiling,
application profiling, and memory analysis.

• Open development platform — Does the RTOS
vendor provide a development environment based
on an open platform like Eclipse, which permits
developers to “plug in” their favorite third-party
tools for modeling, version control, and so on? Or
is the development environment based on
proprietary technology?

• Graphical user interfaces — Does the RTOS use
primitive graphics libraries or does it support
multiple HMI technologies (HTML5, Qt, OpenGL
ES, etc.) and provide advanced graphics
capabilities such as multi-layer interfaces, multi-
headed displays, accelerated 3D rendering, and a
true windowing system? Can the look-and-feel of

QNX Software Systems Exactly When Do You Need and RTOS?

 7

GUIs be easily customized? Can the GUIs display
and input multiple languages (Chinese, Korean,
Japanese, English, Russian, etc.) simultaneously?
Can 2D and 3D applications easily share the same
screen?

• Standard APIs — Does the RTOS lock developers
into a proprietary API, or does it provide certified
support for standard APIs such as POSIX and
OpenGL ES, which make it easier to port code to
and from other environments? Also, does the
RTOS offer comprehensive support for the API,
or does it support only a small subset of the
defined interfaces?

• Middleware for digital media — Flexible support
for digital media is becoming a design requirement
for an array of embedded systems, including car
radios, medical devices, industrial control systems,
media servers, and, of course, consumer

electronics. A system may need to handle multiple
media sources (device, streaming, etc.),
understand multiple data formats, and support a
variety of DRM schemes. By providing well-
designed middleware for digital media, an RTOS
vendor can eliminate the considerable software
effort needed to connect to multiple media
sources, organize the data, and initiate proper
data-processing paths. Moreover, a well-designed
middleware solution will have the flexibility to
support new data sources, such as a next-
generation iPod, without requiring modifications
to the user interface or to other software
components.

Choosing an RTOS is a strategic decision for any
project team. Once an RTOS vendor has provided
clear answers to the above questions, you’ll be much
closer to choosing the RTOS that’s right for you now—
and in the future.

About QNX Software Systems
QNX Software Systems Limited, a subsidiary of Research In Motion Limited (RIM) (NASDAQ:RIMM; TSX:RIM), is a leading vendor
of operating systems, middleware, development tools, and professional services for the embedded systems market. Global leaders
such as Audi, Cisco, General Electric, Lockheed Martin, and Siemens depend on QNX technology for vehicle telematics units,
network routers, medical devices, industrial control systems, security and defense systems, and other mission- or life-critical
applications. Founded in 1980, QNX Software Systems Limited is headquartered in Ottawa, Canada; its products are distributed in
over 100 countries worldwide. Visit www.qnx.com, follow @QNX_News on Twitter, and visit facebook.com/QNXSoftwareSystems.

www.qnx.com
© 2009-2012 QNX Software Systems Limited, a subsidiary of Research In Motion Ltd. All rights reserved. QNX, Momentics,
Neutrino, Aviage, Photon and Photon microGUI are trademarks of QNX Software Systems Limited, which are registered trademarks
and/or used in certain jurisdictions, and are used under license by QNX Software Systems Limited. All other trademarks belong to
their respective owners. 302099 MC411.28

