

QNX Software Systems 1

Client-side Challenges of M2M-enabled
Updates for Mobile Embedded Systems
Tina Jeffrey, Product Manager, Automotive (tjeffrey@qnx.com)
Chris Ault, Product Marketing Manager (cault@qnx.com)

What is M2M?
According to Jürgen Hase, a vice president at Deutsche Telekom’s M2M
Competence Center, M2M (machine-to-machine communication) will usher in a
third industrial revolution.1 M2M is of course not a new concept. It has been in use at
least since the 1990s, when it was known by such old-fashioned names as
“telematics”. For perspective, it does us no harm to remember that the interaction
between an automatic teller and a central banking system is M2M communication,
as is, strictly speaking, the communication between an old-fashioned two-wire house
thermostat and a furnace. In its more current manifestations, however, M2M is
chiefly about communication between electronic devices over wireless networks—
though it does not expressly exclude landline communications.

Thus, M2M refers to networks in which diverse software and hardware systems
communicate data, information, decisions, and instructions. It assumes that some
(and often many) of the component systems are embedded devices, and that a
portion of the communication is carried over wireless technologies. Automotive
telematics provides a good example of established M2M systems.

Figure 1. A simple M2M network connecting sensors to an aggregator and a decision-making
system.

Figure 1 shows a very simplified view of an M2M network, where:

1. A device, such as a remote sensor, sends data to an aggregating system.

2. The aggregating system aggregates data from multiple sensors, transforms it into
information, and sends it to a decision-making system.

3. The decision-making system transforms the information into knowledge and
either communicates this knowledge to a person for a decision or action, or
independently makes the decision or initiates an action.

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 2

In the inverse direction, an M2M network communicates decisions or required
actions from a person or machine back to a remote device, which executes the
required actions.

Depending on the requirements of each implementation, the M2M network may
include multiple levels of aggregation and decision-making systems (such as
consoles and mobile computing devices), or the aggregation and decision-making
systems may be one and the same (a centralized hub). The system that ultimately
makes the decision depends on the needs of the application.

FCAPS
Whatever the specific purpose of an M2M implementation, it will likely involve all or
most of the so-called FCAPS functions: 2

• Fault management—in particular, the uploading and restarting of software and
firmware after a fault has been detected and corrected.

• Configuration management—auto-discovery of components and capabilities, and
configurations to permanent or changing parameters, from subscriptions to
services to localizations.

• Accounting management—collection, and secure storage and communication of
billing and other financial information.

• Performance management—collection, storage and communication of
performance data that can be used to monitor and improve performance of the
system and its various components and devices.

• Security management—authentication and control of access to the system and
its parts by humans and machines.

A new market
Recent interest in M2M and the recent growth in implementations can be attributed
to a number of factors, including:

• the extensive and reliable mobile coverage provided by mobile networks in the
populated regions of industrialized countries

• the decreasing costs of wireless connectivity and of suitable components
(micros, SoCs, 2G/3G/4G modules)

• economic pressures to reduce costs and increase efficiencies in areas ranging
from supply-chain management to traffic flow

• legislative requirements for devices such as smart energy meters and services
such as in-vehicle emergency connectivity

• consumer demand for new products and services such as cruise control in
automobiles that can adjust speeds according to actual traffic flow

Hase notes that today “more than 100 million vending machines, vehicles,
containers and other devices are already connected with each other by a mobile
wireless link”, and presents several estimates for the near-term worldwide growth of
M2M: 360 million connections by 2016 (Berg Insight), 453 million connections by
2017 (ABI Research), and 12.5 billion connections with global sales worth €743
billion by 2020 (Machina Research).3

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 3

Pyramid Research divides this growing M2M market into three elements and
estimates their share of projected revenues as follows: hardware modules (2%),
network access and service management (33%), and systems integration and
application service provisioning (65%).4

Important market segments for M2M development include automotive, consumer
electronics, healthcare, intelligent buildings, smart grid energy, and logistics and
movement of materials. In fact, M2M has a central role to play in what some have
called the “Internet of Things” where objects communicate with other objects
independently of people.5

M2M for remote updates
M2M communications is already in use for both software and firmware (FOTA, or
firmware over the air) updates for a wide range of devices. M2M offers a
considerable range of benefits, whose importance vary depending on the devices
involved. These benefits include:

• Device longevity—this is especially important for devices which are difficult to
access, very numerous, or which must last a long time. The ability to push
updates out to a device such as a sensor at a remote weather station, to mobile
phones, or to automobile head units can significantly extend the useful lives of
these devices.

• Speed—updates can be pushed out immediately; there is no delay while devices
are brought into the shop, or while service personnel go out to the field to
perform the updates.

• Cost reductions—eliminating the need for human intervention to deliver and
install new firmware or software can translate into significant financial savings for
the manufacturer, service provider and consumer.

• Revenue streams—device vendors and service providers can offer updates or
new paid applications and services, after a device has been sold; for instance, a
subscriber with a mobile phone can download and run an application that did
not even exist when the phone was purchased.

Figure 2 below shows a possible overall architecture for M2M-enable software and
firmware updates. Note that M2M can be a viable update mechanism for all sorts of
devices and systems, not just automobiles and mobile phones.

Obligatory and optional M2M-enabled updates
It can be useful to think of software and FOTA updates as belonging to two
categories. Depending on the device and its implementation, M2M-enabled updates
can be an obligatory or an optional strategy:

• Obligatory—satellites, spacecraft and similar devices, which cannot be accessed
by a technician; and more common devices, such as mobile phones, whose
large numbers make it impossible to manage updates without M2M.

• Optional—M2M offers efficiencies and savings. Automotive systems are just this
sort of system, though as the number and complexity of embedded components
in automobiles increases, reliance on M2M may become a necessity.

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 4

Figure 2. Overall architecture for M2M-enabled updates, including the vehicle and handheld
device.

M2M in automotive
The recent joint resolution by the European Parliament and the Internal Market and
Transport Committees calling on EU legislators to mandate that by 2015 all new
vehicles be equipped with eCall capabilities is just one example of the importance of
M2M in the automotive industry.6 Implementations of M2M for automotive go far
beyond emergency services like eCall, however. They can involve everything from
cloud services for infotainment systems to intelligent cruise control, with vehicles and
roadside infrastructure sharing data about speed, road conditions, traffic patterns,
and so on.

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 5

Figure 3. M2M-enabled updates could be used at multiple stages of the vehicle lifecycle.

The number and diversity of current and possible M2M implementations in cars
make them an excellent paradigms for examining issues of software and firmware
updates to mobile and embedded platforms. Automobiles present many systems in
many models, trims and configurations, which must all be served by a limited
number of update strategies.

Client-side challenges
All things being equal on the server side and with the network infrastructure (they are
reliable and secure), M2M-enabled updates to automotive systems present three
major client-side challenges:

• safety-related components—most cars have both non-safety-related systems
(e.g. infotainment) and safety-related systems (e.g. ABS braking systems).

• limited computing resources—unlike networks switches, for example, automotive
systems don’t have the luxury of redundant processors and memory.

• connectivity—cars are truly mobile and their locations and time of use (and
therefore connectivity) are unpredictable.

In short, the requirements for M2M software and firmware updates for automobiles
are sufficiently diverse and demanding that a discussion of these updates is likely to
be valuable, not just to the automotive sector, but also to any industry in which M2M
has or may soon have a role.

The head unit and the ECUs
Modern vehicles contain a complex and sophisticated infotainment system in a head
unit, and approximately 80 electronic control units (ECUs) for engine control, active
suspension control, braking, and other functions. These components use firmware
and, like the infotainment system, many ECUs are software controlled. These
components will likely require firmware updates from time to time to correct faults,
keep them current, or even implement new features and capabilities.

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 6

Figure 4. The vehicle head unit used as a controller for the ECU upgrade process

Already, many infotainment applications can be updated by users accepting updates
pushed through to them. This is not currently the case for ECUs, however. ECU
firmware and software is updated either through a complete module replacement or
through re-flashing the module at a dealership.

This labor-intensive, time-consuming and, therefore, costly model could in many
cases be replaced by an M2M-enabled process managed by the vehicle head unit,
which could use the vehicle identification number (VIN) and other parameters, such
as user language preferences and subscriptions, to determine which updates are
relevant to that vehicle. Figure 4 above shows how a head unit could supervise ECU
image updates, unpack the software updates, and control the software upgrade
process for the connected ECUs within the vehicle. To perform this function, the
supervisor processor would require:

• remote query of the ECU module and software inventory, including information
such as module type, manufacturer, serial number, manufacture date, software
version

• ECU software packaging to create an ECU software payload, validated by the
head unit and distributed to the target ECU

• ECU software image signing

• software update control and image transfer from the head unit to the ECU

Safety-related components
The first question that needs to be asked about any upgrade, regardless of whether it
is an M2M-enabled upgrade or an upgrade by some other method, is whether the
affected device or component is safety-related. This is particularly relevant for ECUs,
which may control critical vehicle functions, but it is also relevant for at least some
components in the head unit. If, for instance, the head unit is used to upgrade ECU
firmware or software, then the head unit or some parts of it become safety-related
components.

If a device or component is safety-related, then the issue becomes not just a
question of performing the upgrade and demonstrating that the upgraded
component meets all safety requirements, such as IEC 61508 Safety Integrity Level 3

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 7

(SIL3). Even if the device or component being upgraded is not itself safety-critical but
interacts with safety-critical components in the vehicle, then the manufacturer will
need to demonstrate that the upgrade maintains component isolation, as required by
ISO 26262.

Add to this the possibility that drivers accustomed to bringing their cars in to a
garage for service may be leery of updates to safety-related systems performed
without direct human intervention—even if they are completely aware that humans
may in fact be the weakest, that is, the most error-prone element in the entire update
process. Finally, there is the issue of safety certifications. The upgrade process may
require approval by the relevant agencies (departments of transport and the like) in
all jurisdictions where it will be used.

Limited resources
In-vehicle embedded systems generally have limited capacities. These limitations are
imposed by:

• the physical constraints of their environment—there is an upper bound on the
power consumption, heat production and physical size of an ECU

• cost—the large number of units produced and the cost of bringing a vehicle
from design to dealer is such that automakers cannot afford to pay premium
prices for their processors; a 20¢ difference in price is significant when it is
multiplied by 80 processors in 10 million cars

• time—vehicles must last at least a decade, while processors and memory
increase in computing power and capacity continuously; in addition, hardware
must be thoroughly proven before it can go into a vehicle, which takes time, so
when a car rolls of the assembly line, its processors are, unfortunately, already
dated

These limitations mean that the hardware on which updates must be performed may
not always have sufficient storage or memory to both keep the current version and
perform the upgrade. For ECUs, the vehicle head unit may provide the excess
capacity required. In some cases though, the head unit itself may have insufficient
capacity for its own updates, especially over time as the vehicle electronics are
required to handle larger updates designed for newer and more powerful processors.

Connectivity
M2M-enabled updates to mobile platforms face a challenge that is for the most part
irrelevant to stationary platforms and devices. The update procedure for sensors and
actuators used in, say, a building management system or factory assembly line may
not need to take into account a possible loss of connectivity during the procedure.
For mobile devices and systems, however, loss of connectivity is a key issue.

For many mobile platforms, the solution is simply to work with an understanding of
the use patterns. For example, movement patterns for smartphones are
unpredictable, but users do not generally start updates while moving; and even if a
phone does lose connectivity the user can simply restart the process. At the other
end of the spectrum, trains move across the countryside at high speed and may
often run beyond areas of network coverage. However, the usage patterns of a train
are highly predictable, so updates can be made during scheduled maintenance.

Like trains, cars move across the countryside quickly, but as with phones this
movement is not easily predictable. Updates may be interrupted when a car enters a

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 8

tunnel, goes down an urban canyon or moves outside its network area; they may also
be forced to pause if the car is unexpectedly required.

Imagine, for instance, a car that has been parked for the night at a house 30 minutes
from the nearest neighbor and 40 minutes from a hospital. Following its default
configuration, at 2:00 a.m. the car’s head unit checks for updates, finds several, and
begins updating critical systems without which the car cannot run. Estimated time to
completion: 17 minutes. At 2:03 the car owner, pregnant for the first time and in her
seventh month wakes up. Her water broke! No other vehicle is available.

Help from the OS
If we summarize the challenges described above as isolation, footprint and time, we
can formulate an approach to these challenges as follows. We need a system that
can:

a) maintain a demonstrable isolation of safety-related components from non-
critical components and from each other

b) perform the updates with the limited CPU and memory resources available
in the vehicle, especially in ECUs

c) complete updates rapidly enough and at such time that they never render
the vehicle inoperable

d) gracefully pause and restart interrupted updates

The OS alone cannot solve all the
challenges of M2M-enabled updates
to mobile systems, but it can provide
a foundation on which to build. If
dependability is essential, as is the
case for automotive platforms, the
OS should be a real-time OS (RTOS),
because these are designed to
support availability and reliability
guarantees.7

A microkernel architecture8 may also
be an important asset for embedded
systems, which don’t have the luxury
of redundant capacity, as might, for
example, a network switch. A
microkernel architecture has drivers,
filesystems, networking stacks and
applications in separate address
spaces, a design that helps ensure
isolation of the update process and
of new components from other
components and the kernel. Equally
important, the microkernel architecture can also accept small, targeted updates for
individual components, including OS components, without affecting the rest of the
system.

For example, if a bug fix is available for a graphics driver, the M2M-enabled upgrade
would require sufficient memory to run a duplicate graphics driver for a short period.
A high-availability manager could be used to gracefully shut down the deprecated
driver and start up the new one.

Figure 5. The microkernel OS architecture:
components are isolated from each other,
and a fault in one component can’t
percolate across the system.

Client-side Challenges of M2M-enabled Updates for Mobile Embedded Systems

QNX Software Systems 9

Applications or services that depend on the component that is to be updated may
need to be notified of the impending interruption, gracefully stopped before the
deprecated component is switched out, then restarted after the new component has
been started. This approach places an additional burden on designers, but
considering the number of systems in any vehicle line, this strategy may prove
rewarding.

Notes
1 Jürgen Hase , “M2M: The third industrial revolution”, EE Times, 19 Nov. 2012.

<www.embedded.com/electronics-blogs/other/4401767/M2M--The-third-industrial-
revolution?cid=Newsletter+-+Whats+New+on+Embedded.com>

2 Chris Hobbs, A Practical Approach to WBEM/CIM Management, London: Auerbach, 2004,
pp. 297-98.

3 Ibid.
4 Pyramid Research, Global Telecom Insider, 4(3) March 2012, p. 4.
5 Kevin Ashton, “That ‘Internet of Things’ Thing”, RFID Journal, 22 June 2009.

<www.rfidjournal.com/article/view/4986>
6 Ludovic Privat, “eCall Mandate Pushed Forward by EU Parliament”, GPS Business News, 20

June 2012. <http://www.gpsbusinessnews.com/eCall-Mandate-Pushed-Forward-by-EU-
Parliament_a3705.html>

7 See Paul Leroux, “Exactly When Do You Need an RTOS?”, QNX, 2012.
<www.qnx.com/download/feature.html?programid=8090>

8 Standards such as IEC 61508 and ISO 26262 note the importance of the architecture in
safety-related systems.

About QNX Software Systems
QNX Software Systems Limited, a subsidiary of Research In Motion Limited (RIM)
(NASDAQ:RIMM; TSX:RIM), is a leading vendor of operating systems, development tools,
and professional services for connected embedded systems. Global leaders such as Audi,
Cisco, General Electric, Lockheed Martin, and Siemens depend on QNX technology for
vehicle infotainment units, network routers, medical devices, industrial automation systems,
security and defense systems, and other mission- or life-critical applications. Founded in
1980, QNX Software Systems Limited is headquartered in Ottawa, Canada; its products are
distributed in more than 100 countries worldwide. Visit www.qnx.com
and facebook.com/QNXSoftwareSystems, and follow @QNX_News on Twitter. For more
information on the company's automotive work, visit qnxauto.blogspot.com and
follow @QNX_Auto.

www.qnx.com
© 2013 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, Aviage are
trademarks of QNX Software Systems Limited, which are registered trademarks and/or used
in certain jurisdictions. All other trademarks belong to their respective owners.
302237 MC411.122

