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Abstract 
Hasty attempts to deal with a specific safety issue without carefully considering the 
question of overall system dependability may lead to a great deal of work for little or 
no benefit, and  the unwitting introduction of significant new problems.  

For our discussion, we look at the 
hypothetical example of an in-cab train 
controller for an Automated Train 
Operations (ATO) system to be used in 
a Light Rapid Transit (LRT) system at a 
high-altitude location where the high 
neutron flux increases the threat of soft 
bit errors in DRAM. We examine the 
effect on dependability of adding 
software error detection to a 2-out-of-2 
system, consider the benefits and 
adverse consequences of this additional 
check, and suggest some other 
approaches to improving dependability 
that might be effective. 

Two tragic corrections 
Two tragedies, one maritime, the other 
aviation, can illustrate how well-
meaning but ill-thought solutions can 
precipitate the very tragedies they are 
meant to avoid. The first tragedy 
occurred in the Chicago River in 1915. 
The SS Eastland listed and rolled over, 
killing more than 840 passengers and 
crew. On its web site, the Eastland 
Memorial Society notes that, according to George W. Hilton, who wrote Eastland: 
Legacy of the Titanic, 

the Eastland's top-heaviness was largely due to the amount and weight of the 
lifeboats required on her. He explains that after the sinking of the Titanic in 1912, a 
general panic led to the irrational demand for more lifesaving lifeboat capacity for 
passengers of ships. Lawmakers unfamiliar with naval engineering did not realize 
that lifeboats cannot always save all lives, if they can save any at all.1 

In conformance to new safety provisions of the 1915 Seaman’s Act, the lifeboats 
had been added to a ship already known to list easily. As Hilton notes, lifeboats 
made the Eastland less not more safe. Other factors, such as the manner and 
speed at which a ship sinks may more significantly affect the number of deaths, as 
they determine whether the lifeboats can even be used. 

Elephants in the room 
In this discussion of safe software 
systems we are knowingly ignoring two 
large elephants in the room: security 
and in-use errors. For the sake of 
simplicity, we are assuming that the 
systems we are evaluating are 
absolutely secure, and that no person 
using them will ever use them 
incorrectly. 

We know that, in practice, these 
assumptions are both incorrect and 
dangerous: a) a system cannot be 
deemed absolutely secure any more 
than it can be deemed absolutely safe; 
and b) people using a system will make 
mistakes, often seemingly random 
mistakes which fall outside all 
previously considered scenarios. In 
practice, then, we will need to 
incorporate security risks and human 
in-use errors in our evaluations of 
software system safety levels. 
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The second tragedy occurred in Antarctica in 1979. Air New Zealand Flight 901 
flew straight into a mountain, killing all 257 people on board.  According to the New 
Zealand Transport Accident Investigation Commission’s report, the computer flight 
plan for this flight “had been in error for 14 months…. This error was not corrected 
until the day before the flight …” and “The crew was shown a copy of the 
erroneous flight plan with the incorrect co-ordinates … but the flight plan issued on 
the day of the flight was correct”.2 Of the 10 contributing factors found by the Royal 
Commission charged with investigating the accident, only two were identified as 
“blameworthy acts or omissions”: failure to supply the pilots with topographical 
maps of their intended flight path, and, especially failure to inform the pilots of the 
corrections made in the computer flight path. Not knowing of the corrections, the 
pilots thought that they were flying over McMurdo Sound, when in fact they were in 
fact headed into Mount Erebus. The Royal Commissioner, P. T. Mahon does not 
mince his words: 

In my opinion therefore, the single dominant and effective cause of the disaster 
was the mistake made by those airline officials who programmed the aircraft to fly 
directly at Mt. Erebus and omitted to tell the aircrew.3 

As with the sinking of the SS Eastland, a correction of one threat (an incorrect flight 
path) inadvertently added stress to the larger system (correct navigation of the 
aircraft) and precipitated a tragedy. 

About safety claims 
When we design a safe software system, one of our first tasks must be to determine 
its safety requirements. This means that we must determine: 

• the system’s required level of dependability; or, inversely, the acceptable level 
of system failure 

• the limits of our safety claims; that is, the conditions and constraints within 
which we make our dependability claims 

If we can demonstrate that within the limits of our safety claims our system 
achieves its required the level of dependability, then we can claim that the system 
is sufficiently safe. 

Reliability or availability? 
For a software system, dependability is a combination of availability (how often the 
system responds to requests in a timely manner) and reliability (how often these 
responses are correct). Thus, a dependable software system is a system that 
responds with the correct answer, when it is required and in the time required.  
When we define sufficient dependability for a system, we must take care to 
understand both the required reliability and the required availability. The relative 
importance of availability versus reliability varies from system to system, depending 
on what the system is designed to do. 

The bicycle paradigm 
The bicycle is an excellent paradigm for thinking about dependability, because its 
safe use so obviously requires both reliability and availability. The rider must make 
the correct decisions about steering, speed, balance, etc. or the bicycle will run 
into something. Unless the rider is a circus performer who can balance a stationary 
bicycle, she must also keep the bicycle moving or it will fall over. 

Imagine a riderless bicycle run by a software controller. The controller must make 
the correct decisions (it must be reliable) in order to get the bicycle to its 
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destination without incident, and it must do so continuously (it must be available). 
Any failure that forces the controller into a design safe state (which usually means 
stopping) for too long would result in a catastrophic failure, just as surely as would 
a failure that caused the bicycle to turn incorrectly. In fact, because our riderless 
bicycle must keep moving in order to stay upright, our controller has no design safe 
state that does not place the larger system (the bicycle) in a dangerous state. 

A simple safe system 
The system we will use for our discussion is a very simple, hypothetical in-cab 
controller (for an equally hypothetical) ATO system running a driverless Light Rapid 
Transit (LRT) system. Figure 1 below illustrates this system. For simplicity, we have 
assumed that the train runs on a circular track, and we have shown the system 
checking only four values: 

• the state of the train (moving or not moving) 

• the time in the station (more than 90 seconds or less than or equal to 90 
seconds) 

• the state of the doors (open or closed) 

• whether the train has entered the station (entered or not entered) 

When it is initialized, our train begins in 
a stopped state, opens its doors, waits 
90 seconds, closes the doors and 
moves on to the next station. When the 
train enters a station, it stops and opens 
its doors, waits, then continues on in an 
endless loop until it finishes its day. Its 
design safe state is “stopped”. 

The controller 
The controller is a 2-out-of-2 (2oo2) 
system; it has two processing 
subsystems, which must agree that it is 
safe to keep the controller out of its 
design safe state. (See “About the 2oo2 
system” on page 6 and  Figure 2 on 
page 7.) If either subsystem indicates 
that the controller cannot run safely, 
then the controller cannot run. A 2oo2 
design increases the system’s 
complexity, but we consider that the 
consequences of the controller not 
working correctly are sufficiently dire to warrant the time and effort duplication 
requires. 

For the purpose of this discussion, the precise criteria which this system uses to 
determine if it must move the controller to a design safe state are less important 
than the fact that whatever the controller does, it must do unfailingly. Opening the 
doors while the train is moving, or starting to move while the doors are open and 
passengers are embarking or disembarking may injure or kill someone. We will 
therefore assume that the system must be certified to IEC 61508 Safety Integrity 
Level 3 (SIL3), which means that the “probability of a dangerous failure” is less 

2oo2 or 1oo2? 
According IEC 61508, Part 6 our 
system is a 1-out-of-2 system (1oo2), 
because one subsystem on its own can 
decide to move the system into its 
design safe state. 

The difference in nomenclatures arises 
because IEC 61508 uses definitions 
inherited from hardware design, 
describing the decision architecture 
based on the number of votes required 
to move the system into its design safe 
state, while we use a definition, now 
common with software design, which 
describes the decision architecture 
based on the number of votes required 
to keep the system out of its design 
safe state. 
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than one in 107 per hour of continuous operation. We are assuming that this 
requirement has been met in the original controller design, but that a new risk, 
which was not considered when the original requirements were written, has just 
been identified. 

 

Figure 1. A very simplified view of an ATO controller that moves to a safe state if it detects 
any dangers or anomalies. The system receives data from timers and sensors about the 
location of the train, its movement, the state of the train doors, and the time it has been in a 
station. It sends instructions to start and stop the train, and to open and close the doors. 
Before sending an instruction, it the checks with its 2oo2 system to determine if it is safe to 
continue. 

A new vulnerability 
The problem we face is that, though the effects of radiation on computer memory 
have long been known, when the original specifications for our system were written 
no one thought to include the threat of memory errors caused by cosmic rays. 

A change of context 
Our hypothetical controller has already proven itself in Rome and several other 
locations. Now a new customer is considering it for an LRT ATO in the La Paz-El 
Alto metropolitan area in Bolivia. La Paz-El Alto has almost 2.5 million inhabitants 
living at an elevation that rises above 4,100 metres (13,600 ft.—higher than Mount 
Erebus). This is a significant change in context, because the threat of soft and hard 
memory errors caused by cosmic rays increases with elevation. The customer asks 
for proof that our system can still meet its safety requirements when the risk of soft 
memory errors caused by radiation is included in our dependability estimates. The 
increased altitude would also require us to revisit other design conditions, such as 
cooling, but in the interests of simplicity we will not consider these here. 

We should start by congratulating our customer for recognizing that, whatever our 
system’s previous successes, and however many millions of hours it ran without 
failure in Rome and elsewhere, changing the context of the system may have 
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invalidated some or all of the data on which its dependability claims were based. 
Specifically, cosmic rays have long been identified as a significant cause of soft 
memory errors, with neutrons the main culprit4. The  greater the number of 
neutrons that pass through an area in a given time (relative neutron flux), the 
higher the risk that neutrons will cause a memory error. Neutron flux varies with 
location (chiefly but not exclusively latitude) and, especially, altitude. The Seutest5 
neutron flux calculator gives a relative neutron flux for La Paz-El Alto that is roughly 
11 times that in Rome.6 

Errors and false positives 
Our problem is twofold: memory errors may cause our controller to fail, and they 
may create false positives, prompting the controller to move to its design safe state 
unnecessarily. It is even possible that radiation will cause a soft memory error and 
affect the same bit in both processing subsystems at the same time causing the 
controller to fail and allow the train to function when it should be moved to a design 
safe state. It is far more likely, however, that a soft memory error in only one 
subsystem will cause a false positive in the 2oo2 system and provoke unnecessary 
controller and ATO shutdowns.  

False positives in our controller may not compromise safety directly. The 2oo2 
design that moves everything to a safe state in the event of any disagreement 
between subsystems creates a highly reliable system. However, dependability (and 
hence safety) also depends on system availability. Though availability appears to be 
less important than reliability in this system (a stopped train is usually less 
dangerous than a moving train) compromises to controller availability do in fact 
compromise overall safety: 

• An LRT train that has stopped (due to a false positive in the controller or any 
other reason) will not be where it is expected to be. This may reduce the time 
and distance between trains, and increase the need for reliance on systems 
communicating and setting train locations, safe distances, etc., placing added 
stress on the wider system. 

• If a system does not perform as required—if it is not available when needed—
people find ways to make them work, often by circumventing the safety 
checks. For example, if a sensor intermittently reports one of twelve train doors 
open when it is shut, users may find ways to bypass the sensor in order to 
keep the train running, on the dangerous assumption that if 11 doors are shut 
the twelfth door must also be shut. 

Given the increased threat of soft memory errors and their possible consequences 
in our system’s proposed new context, we agree with the customer that we should 
look further into the effect of soft memory errors on our system’s dependability. 

Software error detection 
Since the problem is memory errors, it seems obvious that the solution is to add 
memory error detection to our system. Of course, before we do this we should be 
certain that this solution will 

a) be effective 

b) not compromise safety 

What follows is a description of the controller, our assumptions about its 2oo2 
subsystem and handling of memory errors, and our calculations of dangerous 
failure rates with and without the software error detection. The results of these 
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calculations will tell us if software error detection makes an appreciable 
improvement to our system’s dependability, or if we should consider other methods 
to ensure that our controller is sufficiently dependable in its new context. 

About the 2oo2 system 
The 2oo2 system that allows our ATO controller to move from its design safe state 
and perform its tasks running the LRT functions as follows: 

1. Two independent processing subsystems receive the same stimuli (events) 
from the outside environment. 

2. Each processing subsystems uses the events it receives from the outside 
environment to independently calculate whether the controller should move to 
its design safe state. 

3. Each processing subsystem presents the result of its calculation (“Yes” or 
“No”) to a gating subsystem (shown in Figure 2 below as an AND gate). 

4. The gating subsystem compares the two outputs from the processing 
subsystems. 

5. If both outputs agree that the controller may be kept out of its design safe 
state, the controller is allowed to continue running. 

6. Under any other condition, the gating subsystem requires the controller to 
revert to its design safe state. 

Assumptions about the gating subsystem 
We assume that the gating subsystem is approved to IEC 61508 SIL4. For a system 
operating in a low-demand mode, this safety integrity level requires that the 
subsystem will correctly detect the difference between the two outputs from the 
processing subsystems 9,999 times out of 10,000. For a high-demand system or a 
system in continuous operation, the SIL4 rating means that the probability that it 
will fail to detect a difference between the two processor outputs is less than 10−8 

per hour of operation. 

Assuming that the role of the gating subsystem is to actively hold the ATO controller 
out of its design safe state, the continuous mode of operation may be more 
applicable. However, for the purposes of this calculation, the more conservative 
low-demand mode numbers are used, because they assume a less dependable 
gating subsystem. 

Error detection 
The gating subsystem must detect a disagreement between the processing 
subsystems in two different circumstances: 

• A non-recoverable memory error (multi-bit) has occurred in one of the 
processing subsystems, causing that processor to shut down. 

• An application error (possibly caused by an application bug, possibly by an 
undetectable memory error) has occurred on one processing subsystem but 
not on the other. 

In both cases the output from one or both of the processing subsystems will be 
something other than “OK”, in which case the gating subsystem requires the ATO 
controller to revert to its design safe state. 
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While it could be argued that the gating subsystem should be able to detect the 
shutdown of a processing subsystem more reliably than an application error, for the 
calculation below we assume that both types of detection are only accurate 9,999 
times out of 10,000. This is probably a conservative view but, as with the 
assumption of SIL4 for a low-demand system, it is used because it assumes a less 
dependable system. If a less dependable gating subsystem is sufficiently 
dependable, then a more dependable gating subsystem (SIL4 for high demand, 
greater reliability detecting processing subsystem shutdowns) will also produce a 
system sufficiently dependable for our purposes. 

Assumptions about the processing subsystems 
We assume that, in the absence of any memory failures, the two processing 
subsystems in our 2oo2 system have a dependability one order of magnitude lower 
than SIL1 (i.e., the probability of their delivering an incorrect response is less than 
10−4  per hour of operation). In the calculations below we assumed that these 
failures occur with a negatively exponentially distributed arrival time with λ = 10−4 
per hour. 

 

Figure 2. A high-level view of the ATO controller’s 2oo2 gating system. Both processing 
subsystems must agree that it is safe for the controller to run. 

The probability of two simultaneous incorrect answers 
It is essential for us to know the correlation between the failures of the two 
processor subsystems: What is the probability that both processors will calculate an 
incorrect answer simultaneously? 
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Given than most errors will occur in the application (rather than the operating 
system, which has millions of hours of dependable in-field use), and assuming that 
the application is common to both subsystems, based on our (hypothetical) fault 
injection testing we can assume in what follows that there is a 70% chance that an 
error in one processor subsystem will also appear in the other processor 
subsystem. 

Since most errors that go undetected during system validation are likely to be 
Heisenbugs rather than Bohrbugs,7 we consider our estimate to be conservative. 
Like all of the other values we use in this paper, its validity would need to be 
assessed during testing and field trials. 

Assumptions about the memory devices 
We assume that the memory devices (DIMMs) in our 2oo2 system have single-bit 
error correction and multiple-bit error detection (SECDED) ECC algorithms built in 
based on a Hamming code with a minimum distance of 4. We also assume that the 
memory devices do not have Chipkill algorithms. 

It is difficult to get firm figures for the failure of memory devices. Until Schroeder, 
Pinheiro and Weber’s 2009 publication of a large study of Google servers, “DRAM 
Errors in the Wild: A Large-Scale Field Study”8 the anticipated errors rates were in 
the order of 200 to 5000 FITs9 per Mbit. With these estimates, a 2 Gigabyte DRAM 
could expect an error every 12 to 313 hours of operation. The Google study found 
something quite different. It discovered that DRAMs experienced either no errors or 
a large number of errors: their figures were 25,000 to 75,000 FITs per Mbit. The 
75,000 figure corresponds to an error every 50 minutes of operation for a 
2 Gigabyte DRAM. 

In order to have a justifiable error rate for calculation, we used the raw information 
extracted from Table 2 (page 4) of the Google study (DRAMs for platforms A, B, C, 
D and F) converted to FITs per Mbit. From this information we can assume a value 
of 36,707 FITs per Mbit as a reasonable value for correctable errors (i.e., single bit 
errors corrected by the ECC hardware in the memory device). 

The Google study indicates that between 0.08% and 0.3% (mean 0.22%) of 
DIMMs experience an uncorrectable error per year, and that there is a significant 
correlation between correctable and uncorrectable errors: if a correctable error 
occurs on a DIMM, then the probability of seeing an uncorrectable error on that 
DIMM within the same month is between 9 and 47 times higher than on a DIMM 
where no correctable error was observed.10 

For the sake of our modeling, we assume that detected but uncorrectable errors 
occur at a rate of 1 every 1/0.22 = 4.5 years per 2 Gigabyte DIMM. This value 
corresponds to approximately 3 FITs per Mbit, a value supported by the 2004 
paper “Soft Errors in Electronic Memory—A White Paper” from Tezzaron 
Semiconductor, which says that uncorrectable errors occur one to two decimal 
orders of magnitude less often than correctable ones.11 

One value that is impossible to deduce from the statistics given in the Google paper 
is the rate of undetected memory errors: by definition these errors were not 
detected, so no figures are available—or can ever be available—for them.12  To be 
cautious in our estimations, in the following calculation we assume that these 
undetected bugs occur with a frequency one decimal order of magnitude lower 
than uncorrectable errors; that is, 0.3 FITs per Mbit. Thus, in summary, for our 
calculations we assume the following error rates: 
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• Detected and corrected errors: 36,707 FITS per Mbit 

• Detected but uncorrectable errors: 3 FITS per Mbit 

• Undetected errors: 0.3 FITS per Mbit 

Assumptions about handling memory errors 
Three types of memory failure are possible. In our calculations we make the 
following assumptions about how these three error types are handled. 

Detected and correctable memory errors 
Detected and correctable memory errors are counted, but otherwise ignored 
because they are corrected by the hardware and are invisible to the application. In 
light of the evidence presented in the Schroeder et al. study of Google servers, 
however, in a real product it would be wise to monitor these errors: correctable 
errors today appear to be strongly correlated with uncorrectable errors tomorrow. 

Detected but uncorrectable memory errors 
Detected but uncorrectable memory errors are assumed to cause the associated 
processor to shut down. This shutdown will almost certainly be detected by the 
gating subsystem and cause the system to take appropriate action to recover or 
move to a design safe state (see “Assumptions about the gating subsystem” 
above). However, if the processor shutdown passes undetected by the gating 
subsystem, it will lead to a dangerous failure of the entire system. 

Undetected memory errors 
Undetected memory errors are clearly the most dangerous type of error. In 
practice, many undetected errors will affect unused or uninitialized memory and 
will be, therefore, harmless. However, we must expect that some of these errors will 
affect active memory. The result may be relatively benign, say an incorrect 
character in a string for display to a user (benign if we assume that the affected 
character does not cause the user to take an incorrect action). Unfortunately, 
though, in some cases an error in active memory will cause the two processing 
subsystems to give different answers, and the gating subsystem must detect the 
discrepancy. 

For the calculations in this document, we assume that all undetected memory 
errors cause the affected processor to produce wrong values. This is a very 
conservative estimate; many undetected memory errors may have no effect on a 
processor. We use this estimate, however, with the view that it is more prudent to 
assume the worst. 

Calculation with no software error detection 
To estimate the dangerous failure rate, we ran a simulation of 109 years (about 88 
× 1012 hours) 100 times, enough to obtain sufficient results for us to calculate a 
confidence interval.13 The results of our simulation are shown in Table 1, which 
should be read as follows: “It can be said with 99% confidence that, given the 
assumptions listed above, the dangerous failure rate lies between 7.96157 and 
8.01067 FITs.” 
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Confidence Level 
Dangerous Fai lure Probabil i ty  

Lower Bound Upper Bound 

95.0% 7.96884 FITs 8.00340 FITs 

97.5% 7.96547 FITs 8.00677 FITs 

99.0% 7.96157 FITs 8.01067 FITs 

Table 1. Results of calculation for estimated dangerous failure rate, with no software error 
detection. 

Thus, combining two SIL0 processing subsystems with a SIL4 (low-demand mode) 
gate and without using software memory error detection, the resulting system is a 
SIL4 system. 

Limits of our calculations 
Note, that we have not performed the 
second essential calculation as 
described in “Assumptions about the 
processing subsystems” above. We 
have shown that, subject to the 
assumptions given, the system provides 
the safety level required, but we have 
not shown that it can meet its 
availability targets. A system that never 
moves from its design safe state (a train 
that is always stationary, a traffic light 
that is always red, etc.) is safe but 
useless or worse.14 For a real system, 
we would have to make the availability 
calculation to show that our system is 
not only reliable, but also available and 
useful (see the bicycle paradigm 
“Reliability or availability?” above). 

Calculation with software 
error detection 
Given the relatively slow speed at which 
application-level software error 
detection operates (about 23 hours to 
test two Gigabytes of memory),15 it is 
likely that ECC hardware will find both 
correctable and detectable but 
uncorrectable memory errors well 
before the software finds them. 

Software could, however, complement 
the ECC hardware and be used to find 
hard memory errors that have slipped 
by the ECC circuitry undetected. 
Software error detection could be 
useful, therefore, in the following circumstance: 

Hard and Soft Memory Errors 
Memory errors are often referred to as 
“hard” or “soft”. A hard memory error 
is a memory error that is permanent: a 
section of memory (one bit or several 
bits) is no longer able to accept and 
keep its setting. A soft memory error is 
transient: a bit fails to keep its setting, 
but may behave correctly the next time 
it is used—perhaps every time it is 
used following the single failure. 

While the difference between hard and 
soft errors may be immaterial to the 
software designer creating a software 
that must recover in the event of any 
memory errors, it is important to the 
designers of the overall system. 

Schroeder et al. note a correlation 
between soft memory errors and the 
appearance in the future of hard 
memory errors. Further, as electronic 
components decrease in size, the 
speed at which they wear out and fail is 
increasing. Soft errors may be the 
canary in the coal mine announcing the 
imminent hard failures. Safety may 
depend not just on software that can 
(usually) recover from memory errors, 
but on maintenance programs that 
replace suspect boards and reduces 
the stress on this software. 
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1. An undetected memory error occurs. 

2. This error affects the operation of one processing subsystem, causing it to give 
an incorrect answer, and 

3. This error is not caught by the gating subsystem. 

For our calculation, we have assumed that, if the conditions described above 
occur, then the software check has an 80% chance of finding the error and forcing 
a halt on the affected processor. This halt may, or may not, be caught by the gate 
subsystem. 

When we re-ran the simulation with these assumptions, we found that there is 
effectively no change in the probabilities of dangerous failure given in Table 1 for 
the same system without software error correction. Our system remains a SIL4 (low-
demand mode) system. 

Summary of findings concerning software error correction 
The 2oo2 model provides an excellent controller design for providing system safety. 
Even with very low levels of dependability in the processing subsystems, the 
probability of dangerous failure is very low. Given the assumptions we have worked 
with, adding software detection of memory errors makes no appreciable difference 
in our system’s dependability, and, in any case, detection is far too slow to be 
useful for detecting soft errors16. In short, software detection of soft memory errors 
does not appear to be a terribly useful solution for dealing with soft memory errors 
in our hypothetical ATO controller. 

Rethinking the problem 
Soft memory errors are a real threat, and the incidence of these errors caused by 
cosmic radiation is very likely to increase with altitude. For our LRT controller, 
software error detection does not appear to be a good solution, for two reasons: a) it 
is too slow, and b) it does not appreciably reduce the probability of our controller 
failing. Our hypothetical controller’s 2oo2 design appears to ensure our system’s 
safety. 

For our system, we should remember that just because the system is sufficiently 
safe, it is not necessarily sufficiently available—or, for that matter, even useful. We 
have noted that with our 2oo2 design, false positives can significantly compromise 
our controller’s availability,17 which may not only make our controller perform 
poorly, but also compromise the safe operation of the LRT by putting added stress 
on the correct and safe operation of other ATO components. 

Did we try to solve the right problem? 
In his article about the 2005 grounding of the Queen of Oak Bay in Horseshoe Bay, 
British Columbia, Terry Hardy notes that on this ship redundancy was implemented 
in such a way that it was perfectly useless when both engines were shut down: 

While redundancy can theoretically improve reliability, redundancy can also 
increase system complexity and lead to unforeseen failures. In addition, 
redundancy can introduce unforeseen dependencies that can decrease safety.18 

In other words, the redundant engines only improved system reliability if nothing 
compromised the engines’ availability. As it turned out, both engines were 
unavailable and the entire system failed. Fortunately, no one was hurt in this 
accident. 
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Keeping in mind that our ATO system appears to be sufficiently safe but that we 
may not have given adequate consideration to availability, it may be worth our while 
to step back and try to rethink the problem. We could start by asking ourselves if 
the problem we are trying to solve is indeed soft memory errors. 

As with so many questions in the real world, the answer is both “Yes” and “No”. It 
is “Yes” in that soft memory errors may create false positives in our 2oo2 
subsystem, forcing our controller into a design safe state and compromising its 
availability. It is “No”, in that we only care about soft memory errors insofar as they 
might cause the controller to actually fail. What we really care about is that the 
controller is sufficiently dependable, which means both sufficiently reliable and 
sufficiently available. 

Our 2oo2 design ensures our system is sufficiently safe. As we saw above, the 
probability that our system will deliver an incorrect response is within the 
requirements of IEC 61508 SIL4. As we also saw above, this carries a cost of 
possibly reduced availability. We could, therefore, rephrase our problem as follows: 

1. We are confident that our system is sufficiently safe. 

2. We are not confident that our system is sufficiently available. 

3. Therefore, how can we improve our system’s availability without compromising 
its safety? 

Alternate strategies 
The following are a few suggestions that may help improve controller availability. 
We are assuming that we will not alter the 2oo2 design, as it is fundamental to our 
reliability claims, and that we would perform the appropriate calculations to 
evaluate the effect of each change we implement. 

Second opinions 
If there is time to ask for an information refresh when gating doesn’t agree, then 
asking for this refresh may be an excellent solution. Since soft memory errors are 
by their nature transient, if the disagreement in the two gating subsystem 
processors is caused by a soft error, a refresh will likely provide correct and 
matching answers, and avert a false positive. If the second opinion confirms the 
first disagreement, then we can be confident that something is amiss and have the 
controller take appropriate action, such as move to a design safe state. 

This second opinion strategy may be triggered dynamically. A controller on a train 
stopped in a metro station may be able to a two second delay required for a reset 
and retry. A controller on the same train approaching a station at 50 km/h may not. 
The decision to request a second opinion could therefore be triggered by the train’s 
speed, as well as other factors, such as its location and the weather (which might 
affect stopping distance). 

ECC 
ECC, including Chipkill (repair up to 4  bits), can be used to handle soft memory 
errors. In many cases a SECDED algorithm on the memory can provide the 
necessary level of resilience in the system. Chipkill memory would provide even 
more resilience, as it would handle many memory errors before they were noticed 
by the software. This memory is costlier, but its cost may be acceptable on low-
volume products, such as LRT systems (compared to automobiles) and worth the 
decreased risk of memory errors. 
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Board replacement 
Based on evidence such as that in the Google study cited earlier, there appears to 
be a correlation between soft memory errors now and hard memory errors showing 
up in the future. We may be able to improve dependability by logging errors and 
replacing those boards where soft errors are most frequent, by replacing boards 
more frequently, say every 20 months instead of waiting five years. 

What did we miss? 
Our focus on soft memory errors was legitimate, considering the change in context 
where our system is to be deployed and what we know about neutron flux at 
altitude. However, now that we have examined this problem, we should also 
consider what we might have missed by focusing on solutions to soft memory errors 
caused by cosmic radiation.  

For example, is our system susceptible to soft memory errors caused by electro-
magnetic interference from, say, mobile phones or other radios or power sources? 
Are the physical location of the system and cabin design such that no source of 
radiation can be placed close to the system and inadvertently interfere with its 
correct functioning? Has the change in altitude and the correspondingly thinner 
atmosphere significantly changed our hardware’s cooling requirements? 

Since our ATO system has already been in use in another environment, we can 
probably assume that we have designed the system with the understanding that 
components and the system itself may indeed fail. That is, we have designed our 
system to: 

• isolate safety-critical components from other components and each other, as 
required by the relevant safety standards 

• detect errors while the system is running and correct them 

• detect failures and contain them, or perform controlled shutdowns and 
restarts, or move to a design safe state as required and possible 

Finally, we need to ask if the solutions we propose decrease or increase the risk of 
a failure, both of the specific system we are designing (in our case the in-cab 
controller for the ATO system), and of the larger system in which it will be 
implemented. Even if, for example, false positives causing a decline in availability 
do not significantly compromise the dependability of the controller, what are the 
consequences for the entire LRT system? If moving to a design safe state and even 
stopping the LRT train is acceptable, how does this solution affect the rest of the 
system? How does having an unplanned stop of one train increase the stress on 
other elements in the system? 

To make our bicycle paradigm more accurately describe the questions we face with 
our ATO controller, we need to adjust it somewhat. We need to consider, not just 
one bicycle, but many bicycles packed together in a race. A solitary bicycle may be 
able to get away with suddenly slowing down while its controller resets, but a 
bicycle that does this in a race is a danger to the other bicycles. It may put them in 
a situation they cannot handle, and send them all crashing into the pavement. 
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