

QNX Software Systems 1

Building Flexible, Future-Proof
Infotainment Systems
Tina Jeffrey, Automotive Product Marketing Manager, QNX Software Systems
Andy Gryc

Car infotainment systems are evolving from purpose-specific devices into
connected, upgradeable platforms — as indeed, they must. For evidence, look
no further than the issue of smartphone integration. New smartphones come to
market almost every month, and new smartphone apps come out every hour,
whereas infotainment systems must operate in the field for 10 years or more.
So how can an infotainment system designed today work with phones or apps
created tomorrow, or several years from now? There is, of course, no single
connectivity solution that can address the problem. Thus, an infotainment
system design should possess the underlying flexibility to accommodate the
inevitable evolution of the mobile market. The alternative is early obsolescence.

A similar dilemma applies to apps running on the infotainment system itself.
Even if a connected smartphone provides a significant portion of the system's
user experience (UX), the system itself still needs to run a core set of
applications. That way, it can deliver a satisfactory UX regardless of which
smartphone is present, or even if no smartphone is present.

The question is, which application environment? A homegrown environment
may make little sense, since app developers prefer to target the high-volume
environments used in smartphones. On the other hand, smartphone app
environments generally aren’t designed to address the performance, reliability,
and security requirements of the car. So how do you deliver built-in apps and
still remain “automotive grade”?

Going native
To understand how these issues can be addressed, consider the software
options available to infotainment system developers. For many, the tried-and-
true approach is a native C/C++ toolkit such as EB GUIDE, Qt, or Crank
Storyboard. Indeed, these toolkits often provide the best path to creating a
quality UX: they generally boot faster, perform more responsively, and
consume less memory than “virtual machine” environments such as Android or
HTML5.

Native toolkits can also streamline product development. Some, for example,
support state machines, which allow developers to build an entire HMI without
writing code and which make the final HMI easier to test. Some toolkits also
allow developers to take HMI components designed in a program like
Photoshop and import them directly into the live system design, rather than
spend days or weeks recreating the components in code.

Building Flexible, Future-Proof Infotainment Systems

QNX Software Systems 2

The problem is, many native toolkits cannot support applications written in a
popular app environment such as Android or HTML5. Is the solution, then, to
use one of these environments not just for apps, but as the basis for the entire
HMI? There is, in some cases, an argument for doing so.

Going mobile
HTML5, for example, offers many capabilities of a traditional HMI toolkit,
including a rendering engine, content authoring tools, and a programming
language; it also offers benefits that some native toolkits would be hard-
pressed to match. For instance, HTML5 supports Cascading Style Sheets
(CSS), which cleanly separate business logic from the HMI, making the HMI
relatively easy to customize or re-skin. Moreover, HMTL5 can run on head units
as well as on mobile phones, allowing developers to create a single HMI code
base that works regardless of whether a car has a head unit (where the HMI
runs in the car) or a headless, phone-assisted system (where the HMI runs on
the phone). HTML5 also supports the notion of an “executable HMI
specification,” where the automaker supplies the HMI prototype, coded in
HTML5, and the tier 1 supplier takes care of connecting the HMI to any
required services. This approach eliminates the tedious, error-prone process of
recreating the entire HMI from screen printouts.

Despite these advantages, mobile app environments like HTML5 don’t always
serve as the best foundation for a built-in HMI. In particular, no one wants the
outside world, with its unpredictable web content and potential security threats,
to threaten HMI behavior. And, as mentioned, such environments aren't in the
same league as native toolkits when it comes to boot times, performance, and
memory usage.

Does all this mean that automotive companies must choose between the
benefits of native HMI toolkits and those of a mobile app environment? Not at
all. Look, for example, at the accompanying photo, in which a head unit based
on the QNX CAR Platform for Infotainment is running apps from a mix of mobile
environments in an HMI built with a native toolkit. Components built with the
various environments all appear on the same display, at the same time, with no
visible separation between them.

Building Flexible, Future-Proof Infotainment Systems

QNX Software Systems 3

 Apps from a mix of mobile environments running in an HMI built with a native toolkit.

Blending output
To combine these environments successfully, a software platform must support
several key technologies. The first is graphical composition, which consolidates
output from multiple application windows onto a single display. The windows
may need to be tiled, overlapping, or blended — or some combination thereof.
To perform this consolidation quickly and responsively, the platform’s graphical
framework should take advantage of hardware acceleration in the GPU.
Properly implemented, graphical composition allows the user to interact with
components created in different environments without having to manually
switch environments or, indeed, seeing any noticeable change when moving
from one component to another.

Abstracting services
To combine environments, the platform must also provide an abstraction layer
that enables applications created with a variety of tools and languages to
interact with system services. For instance, in a service abstraction layer based
on publish/subscribe messaging, data objects allow applications to access
services such as the multimedia engine, database engine, voice recognition
engine, vehicle buses, connected smartphones, Bluetooth profiles, hands-free
calling, and contact databases. These data objects can consist of multiple
attributes, each providing access to a specific feature such as the frequency of
the current radio station or the RPM of the engine. System services publish
these objects and modify their attributes; other programs can then subscribe to
the objects and receive updates whenever the attributes change.

Ideally, this messaging layer is programming-language independent, allowing
programs written in a variety of programming languages (C, C++, HTML5,
Java, JavaScript, etc.) to intercommunicate, without requiring any special
knowledge of one another. Thus, an app in a high-level environment like

Building Flexible, Future-Proof Infotainment Systems

QNX Software Systems 4

HTML5 can easily access services provided by a device driver or other low-
level service written in C or C++.

 Using persistent publish/subscribe messaging to implement an abstraction layer

between high-level applications and system services

Containing apps
Applications from the mobile world can help enrich and extend the infotainment
UX. Nonetheless, it’s important to ensure the security (and hence the safety) of
the car by protecting it from the “wild west” of mobile apps. The system's
software platform must therefore isolate such apps in a container to prevent
malicious or poorly coded apps from impacting the vehicle, even accidentally.

Keeping it fresh
To stay current, an infotainment system must support over-the-air (OTA)
software updates. This requirement will only grow in importance as cars
become more connected to fast-evolving cloud services and mobile devices.
Ideally, the OTA implementation will use the car's built-in modem. It could also
use a smartphone connection, in which case it should use a technology like
NFC to simplify the task of pairing the phone and car, as many consumers find
conventional Bluetooth pairing difficult and time-consuming.

For practical and economic reasons, OTA updates should consume as little
time and network bandwidth as possible. Ideally, then, an infotainment system
will support fine-grained updates in which the system downloads only new or

Building Flexible, Future-Proof Infotainment Systems

QNX Software Systems 5

modified software components. A publish/subscribe architecture makes such
updates easier to implement, as it provides loose, flexible connections between
software components, enabling almost any component to be upgraded or
replaced without affecting the components that it communicates with. A
microkernel OS also simplifies fine-grained updates by enabling device drivers,
virtual machines, file systems, networking stacks, and other system-level
services to run as separate, dynamically upgradeable processes.

All that being said, keeping an infotainment system relevant cannot simply be a
matter of “throwing” apps at the problem. The app paradigm, where the driver
must consciously switch from one app to another, only creates distraction in the
car. Thus, popular streaming music services like Pandora or Slacker should be
seamlessly integrated into the radio user interface; the same goes for point-of-
interest or location-based service apps, which should be integrated into the
navigation system.

The ideal auto app, then, isn't an app at all, but a plug-in. With a plug-in
architecture, the car’s natural interfaces can be extended to include new
content and new features in a way that makes apps much easier to understand
and interact with.

About QNX Software Systems

QNX Software Systems Limited, a subsidiary of BlackBerry, is a leading vendor of
operating systems, development tools, and professional services for connected
embedded systems. Global leaders such as Audi, Cisco, General Electric, Lockheed
Martin, and Siemens depend on QNX technology for vehicle infotainment units, network
routers, medical devices, industrial automation systems, security and defense systems,
and other mission- or life-critical applications. Founded in 1980, QNX Software Systems
Limited is headquartered in Ottawa, Canada; its products are distributed in more than
100 countries worldwide. Visit www.qnx.com and facebook.com/QNXSoftwareSystems,
and follow @QNX_News on Twitter. For more information on the company's automotive
work, visit qnxauto.blogspot.com and follow @QNX_Auto.

www.qnx.com

© 2014 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, and
Aviage are trademarks of BlackBerry Limited, which are registered and/or used in
certain jurisdictions, and are used under license by QNX Software Systems Limited. All
other trademarks belong to their respective owners.

http://www.qnx.com/
https://www.facebook.com/QNXSoftwareSystems
http://twitter.com/QNX_News
http://qnxauto.blogspot.com/
http://twitter.com/QNX_Auto

