

QNX Software Systems 1

Architectures for ISO 26262 systems

with multiple ASIL requirements

Yi Zheng, Product Manager, Safe and Secure Systems
QNX Software Systems

In-vehicle electronics

Roger Rivett, a functional safety specialist at Jaguar Land Rover, describes
today’s automobile nicely:

“…rather than thinking of the vehicle as a mechanical machine, with some
electrical components, it would be more accurate to think of the vehicle as a
distributed computer system programmed for personal transport.”1

The exponential increase in the number and complexity of in-vehicle electronics
has transformed the automobile. At one time, the car was primarily an
assembly of mechanical components; it has now become a system that
integrates both mechanical and electronic components, with the electronic
components representing a substantial portion of the added value and a
disproportionate share of the headaches.

With a century of experience behind them, automakers have the building of the
mechanical part of the car down to constant improvement and refinement of
details. In-vehicle electronics, which include dozens of electronic control units
(ECUs) and a head unit running complex infotainment software are a different
matter. Not only are these systems evolving rapidly, but consumer demand for
new applications and services is straining automakers’ ability to deliver.

Figure 1. In-vehicle safety-related and non-safety-related systems distributed across
different modules throughout the vehicle.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 2

Figure 2. The same safety-related and non-safety-related systems shown in Figure 1,
consolidated in the head unit.

Of course, automakers must provide all these new features without breaking
the bank. The need to control costs, together with the availability of high-
performance, low-cost processors, is driving consolidation of multiple in-vehicle
systems onto one board. A design that eliminates one $50 module per vehicle
translates into a substantial sum when multiplied by 5 million vehicles.

This consolidation creates its own challenges, however. In particular, many in-
vehicle systems are safety-related, while others are consumer applications and
impossible to prove as safe — yet all these disparate systems may need to run
on the same CPU. Moreover, any in-vehicle system may now be connected,
directly or indirectly, to the outside world. While this connectivity opens many
new possibilities, such as over-the-air (OTA) firmware updates, it also creates
new security and safety challenges.

The problem, then, is how to design and validate a system that incorporates
components unlikely to require safety certification (for instance, a 3D display
running consumer-grade applications) with components whose dependability
and freedom from undesired interference must be rigorously engineered and
proven (for instance, a blind spot detection module).

It is no accident that a main task set out by ISO 26262 Road vehicles—
Functional safety2 is the isolation of components.

ISO 26262 ASILs

Adapted from IEC 61508,3 which specifies safety integrity levels according to
probability of failure, ISO 26262 specifies four automotive safety integrity levels
(ASILs). The lowest ASIL is A, the highest is D.

Unlike ISO 61508 SILs, which are for more general applications, ISO 26262
ASILs take into account the specifics of failures in an automobile. Each ASIL is
based on a combination of three factors:

1. The probability that an event will occur.

2. The harm that will likely result from the event.

3. The probability that the driver will be able to control the vehicle following the
event.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 3

Components whose failure will result in an event that is unlikely to occur,
unlikely to cause much harm, and unlikely to interfere with the driver’s control of
the vehicle may only require a safety level of ASIL A. Components whose
failure will result in a common event that may cause great harm (such as
serious injury or death) will likely require ASIL C or D, depending on the
probability that the driver will lose control of the vehicle.

Interference

A violation of safety requirements occurs when ASIL components interfere with
each other. The violation can occur when a component of any ASIL interferes
with another component of a higher, equal, or even lower ASIL. Interference
can take place when components are working together, or are supposed to
work independently of each other. This is of particular concern when the
components share a single CPU and memory subsystem.

For example, a communications module of ASIL B might interfere with an
adaptive cruise control system of ASIL D. The communication module, in
supplying data about ice on the road to the cruise control system, might rapidly
broadcast an excessive number of messages (babbling), preventing the cruise
control system from doing anything but receive messages. This same
communications module might also interfere with a lower ASIL component such
as the multimedia player by not releasing memory that the multimedia player
needs to buffer music from the Internet.

Table 1 and Figure 3 summarize common forms of interference.

Interference Description

Resource
deprivation

By improperly using file descriptors, mutexes, flash memory, or
other system resources, one process can deprive other processes of
these resources.

For example, by periodically using and not releasing a file
descriptor, a process could eventually consume all the system's file
descriptors and prevent another process from opening a file.

Time starvation A process can prevent another process from completing its tasks by
depriving it of computing time.

For example, by performing a processor-intensive calculation or by
entering a tight loop under a failure condition, a process could
prevent a more critical process from running.

Illegal memory
access

Occurs when a process reads or writes to the private memory of
another process. A read access could constitute a security breach
that leads to a safety problem later; a write access could
immediately create a dangerous situation.

Data corruption A process that shares corrupt data with another process may cause
that process to behave in an unexpected and potentially unsafe
manner.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 4

Interference Description

Babbling A process may break its contract with a cooperating process and
“babble” (send messages at a high rate or repeating messages) or
send messages with incorrect data.

Denial-of-service (DoS) attacks use this tactic to shut down a
service, but such attacks are not the only source of babbling.

Deadlock A deadlock occurs when cooperating processes wait for each other
to complete. Since no process can advance until the other finishes,
the system makes no forward progress.

The circumstances that give rise to deadlocks are generally subtle
and, because of their temporal nature, can seldom be detected or
reproduced by testing.

Table 1. Common ways software components can interfere with the correct behavior of
other software components.

Figure 3. Ways in which other processes can interfere with the correct behavior of a
safety-related process.

Building a resilient system

All design techniques have limitations and drawbacks. Fortunately, design only
represents one line of defense. Techniques such as formal design and static
analysis should also be used at appropriate stages in the project. And, as
specified in ISO 26262, isolation of components from interference by
components of different ASILs offers another technique for building resilient
systems that can meet safety requirements.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 5

Faults, errors, and failures

Paradoxically, a fundamental principle of safe system design is the recognition
and acceptance that the system will contain faults. As Tom Anderson, a
professor at Newcastle University’s Centre for Software Reliability, wrote in
Safety Systems journal:

The inherent complexity of present-day software systems (including single-
threaded), compounded by the vast range of possible input sequences with
which such systems interact, leads to a pace of behavioral possibilities of
enormous magnitude, a space where the notion of determinism becomes a
matter of philosophy or even sophistry.4

Modern software systems have become so complex that is impossible to
empirically prove them fault-free; that is, to test all possible paths and states.
Automotive systems are no exception. Quoted in the IEEE’s Spectrum
magazine in 2009, Manfred Broy, a professor of informatics at the Technology
University, Munich, noted that “a premium-class automobile ‘…probably
contains close to 100 million lines of software code’.” The authors of ISO 26262
make the point rather less dramatically, but no less accurately:

With the trend of increasing technological complexity, software content and
mechatronic implementation, there are increasing risks from systematic failures
and random hardware failures. ISO 26262 includes guidance to avoid these
risks by providing appropriate requirements and processes.5

Figure 4 below presents an adaptation of James Reason’s model of how faults
become errors, which lead to failures.6 In short, something is bound to go
wrong. Anyone building a safe system must keep this assumption in mind.

Figure 4. James Reason’s model (adapted) of how faults become failures.

ISO 26262 acknowledges this problem through the importance it places on
isolation. If software components—and especially components of different

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 6

ASILs—can be isolated from each other, then the failure of one component will
be contained. The failure won’t compromise other components or the entire
system. Indeed, many errors, such as writing data into the memory of other
processes, may not cause the component that contains the offending code to
fail, but may interfere with another component and bring it or the entire system
down.

Thus, a resilient system not only uses components that are sufficiently
dependable to meet their respective safety requirements (their ASILs for
automotive systems), but also isolates safety-related components from the
effects of failures in other components. Current strategies for ensuring isolation
involve virtualization and microkernel OS architecture.

Virtualization

Developers can choose from two main virtualization techniques: in a Type 1
hypervisor, the different guest OSs run on the virtualization layer, and in a Type
2 hypervisor, a guest OS runs nested inside another OS.

A hypervisor can help provide the component isolation required of an ISO
26262 system. Two OSs could run on the virtualization layer, each in a
separate environment. One OS would run the safety-related components and
the other would run everything else, such as multimedia applications and 3D
navigation. Each OS would run as if it were the only OS on the board, using the
resources allocated to it by the virtualization layer.

Things to consider when evaluating virtualization

Virtualization is attractive and seemingly simple, but there are many factors,
both technical and financial, to consider before adopting a virtualization
solution.

Visibility

Much of the functionality of the virtualization layer depends on the hardware.
The hardware providing virtualization support is as complex as a memory
management unit (MMU). But unlike MMU technology, which has now had
years to prove itself in use, on-chip virtualization support is still relatively new. If
a bug on a chip compromises dependability or software component isolation,
either the chip has to be replaced, or work-arounds must be found and
implemented in the hypervisor and possibly in the safety-related guest OS—all
expensive undertakings.

Performance

Virtualization adds another layer of software to the system. New hardware
technologies have gone a long way to minimize the latency introduced by the
virtualization layer, but the virtualization layer itself may still affect performance
of critical components. This can be especially problematic for hardware
peripherals that require high bandwidth, such as a graphics processing unit
(GPU). In a head unit that, for example, combines a low ASIL level infotainment
system with a high ASIL level pedestrian-detection warning system, both
systems could need to share high-bandwidth GPU resources. The virtualization
layer would need to distribute the GPU resources intelligently so as to
guarantee the smooth function of the pedestrian warning system.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 7

Complexity

Hypervisor designs typically involve different OSs: one for the safety-related
components and one for everything else. This, of course, is a more complex
proposal than building a system with a single OS.

Granularity

Virtualization isolates the two OSs from each other, but it doesn’t isolate
components running on each guest OS. The OS running the safety-related
components doesn’t have to protect these components from non-safety-related
components, but it must still be able to isolate safety-related components from
each other.

For example, a system that includes an infotainment system, digital instrument
cluster, adaptive cruise control system, and lane departure warning system
might run the infotainment system on guest OS A and the other components on
guest OS B. This approach would isolate the safety-related components from
the infotainment system, but does nothing to protect, say, the lane departure
warning from interference from the digital instrument cluster or adaptive cruise
control. This protection would have to be handled by additional isolation and
separation mechanisms within OS B, as specified in ISO 26262, Part 6, 7.4.11:

If software partitioning… is used to implement freedom from interference
between software components it shall be ensured that… the shared resources
are used in such a way that freedom from interference of software partitions is
ensured7

Figure 5 illustrates how, even with virtualization, OS B must provide partitioning
to protect the safety-related components from each other.

Figure 5. With virtualization, the OS running the safety-related components remains
responsible for isolating these components from each other.

Long-term cost

The runtime licensing of a hypervisor commands its own share of the Bill of
Materials (BOM). Thus, while a hypervisor-based design can reduce hardware
costs, it does not necessarily reduce the overall BOM for the software.

More significantly, responsibility for an in-vehicle safety-related software system
does not end when the vehicle rolls off the assembly line, but continues
throughout the life of the vehicle. When something goes wrong, the automaker
must remedy the situation. The automaker or its suppliers must be prepared,

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 8

therefore, to maintain and assume the cost of the dual development
infrastructures inherent in a two-OS solution throughout the lifespan of the
vehicle.

Isolation and dependability

Whether or not virtualization is used to isolate safety-related components from
non-safety-related components, an ISO26262 system must be designed so that:

 safety-related components meet their dependability requirements

 safety-related components are protected from interference from other
components, both non-safety-related and safety-related

OS architectures

OS architecture is crucial in an ISO 26262 system, both because it is
fundamental to overall system dependability and because it determines how
easy it is to isolate and protect components with different or equivalent ASIL
requirements. Table 2 below lists the most common OS architectures used in
embedded systems and summarizes how these architectures affect component
isolation.

OS Type Design Advantages Disadvantages

Real-time
executive

All components run
together in a single
memory address space

Efficient A pointer error in
one component can
corrupt memory
used by the kernel
or by another
component,
causing system-
wide failure.

Monolithic OS Applications run as
memory-protected
processes.

Kernel components
share the same
address space as file
systems, protocol
stacks, and drivers.

The kernel is
protected from
errant user code.

A fault in a device
driver or other
service that shares
the same address
space as the kernel
can bring down the
entire system.

Microkernel OS Applications, device
drivers, file systems,
and networking stacks
reside in separate
address spaces,
isolated from the kernel
and each other.

Faults won’t
percolate across
the system.

The system can
restart a failed
component.

Components with
different ASILs can
be combined in the
same system.

Small increase in
overhead for inter-
component
communication.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 9

Table 2. OS architectures and how they address component isolation.

Figure 6. A microkernel OS isolates components from each other; a fault in one
component can’t percolate across the system.

An in-vehicle system will likely incorporate a multimedia component that uses
high-end 3D graphics to display non-critical information on the head unit
screen. This component may only require an ASIL of B or even A, while the
safety-critical components (managing braking, adaptive cruise control, assisted
parking, etc.) will require ASIL C certification or better. We suggest that a single
microkernel OS can provide both sufficient dependability and sufficient
protection from interference for an ISO 26262 system.

Protection from interference

In general, in a system with safety-related components, it is best to isolate as
many components as possible, using a variety of complementary techniques.
These techniques are applicable to different stages of the project, from design
to validation of the completed components and system. The following OS
features can help address the types of interference described in the
“Interference” section, above.

Preventing resource deprivation

By using resource limit (rlimit) parameters, system designers can set upper
limits on the size and quantity of resources allocated to a process or application
(address space, memory, number of processes or threads, number of file
descriptors, etc.). Thus, no process or application can monopolize resources
and starve other processes.

To provide another line of defense, the system can include an anomaly
detection program. This program would learn what constitutes normal behavior
for a particular system, then monitor resource allocations and take corrective
action when it detects that a process is making abnormal use of resources.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 10

Bound multiprocessing (BMP) can also help protect resources needed by
safety-related components. BMP is an advanced form of processor affinity—or
symmetrical multiprocessing (SMP)—that lets designers assign threads or
entire hierarchies of threads to specific cores. In an ISO 26262 system running
on dual-core processor, Core A could be dedicated to threads for safety-related
components, excluding all other threads, while Core B could run the threads for
all the non-safety-related components. Thus, a multimedia component running
on Core B could not starve the safety-related processes of needed CPU
resource. For a more in-depth discussion of SMP and BMP, see Shiv
Nagarajan’s paper, “Processor Affinity or Bound Multiprocessing?”.8

Preventing time starvation

Time partitioning helps ensure that all processes have access to sufficient CPU
cycles to meet their time constraints. It separates CPU time into partitions,
guaranteeing each process or group of processes a specific portion of CPU
cycles, so that no process can starve other processes.

A specific form of time partitioning, called adaptive partitioning, can provide
these guarantees while also ensuring that system resources aren’t wasted. It
assigns minimum levels of processor time to a group of threads if the threads
need it (see Figure 7 below). The pre-set partition boundaries are enforced
when the system is running to capacity. However, if a process in one partition
can benefit from more CPU cycles, and processes in other partitions are not
using their allocated time, the OS adapts the partition boundaries to lend the
unused cycles to the process that can use them.

Figure 7. An example of adaptive time partitioning.

In simpler systems, scheduling policies and tools such as rate- and deadline-
monotonic scheduling can help ensure that processes meet their real-time
deadlines. For example, with rate-monotonic scheduling, the processes with
greater execution rates receive the highest priorities.9 For some systems it is

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 11

then possible to provide mathematical proofs that real-time deadlines will be
met.

Preventing illegal memory access

A hardware MMU can prevent illegal memory access in conjunction with the
OS. If the OS supports this feature, the MMU will prevent a process from
reading, or writing to, the memory of another process. This should be a
required feature of any software architecture used for a safety-related system.

Preventing data corruption

Protection against data corruption includes checksums, simple replication, data
diversification, and sanity checks. Of all these options, a checksum or cyclical
redundancy check (CRC) added to the data probably uses the least memory,
but does not allow repair of corrupted data. Replication simply copies the data
over to more than one location, sometimes remotely. With diversification, the
same data is stored in more than one location, in different semantic ways.
Sanity checks ensure that the data read is within acceptable parameters and
rejects anomalies.

These techniques can all increase memory or CPU overhead. However, they
can all be useful in systems that require guaranteed operation under adverse
conditions, so the cost of implementing them should be considered during
system design.

Preventing babbling

Babbling and malicious denial-of-service attacks can be contained by an
anomaly detection program that learns what constitutes normal behavior and
takes corrective action when the system begins to behave outside expected
boundaries. Also helpful for this type of testing is “fuzzing,” where you
intentionally call program functions with malformed inputs or in unexpected
ways as a way to uncover conditions that the system cannot handle correctly.

Preventing deadlocks

Deadlocks occur when cooperating processes wait for each other to complete
an action. Because both processes are waiting for the other to finish, progress
stops.

Priority inheritance can help prevent deadlocks. It solves the problem of priority
inversion, where a low-priority task prevents a task with a higher priority from
completing its work. Priority inheritance prevents priority inversions by
assigning the priority of a blocked higher-priority task to the lower-priority thread
doing the blocking until the blocking task completes (see Figure 8 below).

Hardware watchdogs can also help address deadlocks, but they may not
always detect a deadlock because they are oblivious to processes from which
they are not expecting a “kick.” In comparison, a software watchdog, or high-
availability manager, can help ensure that progress is being made. If the
system architecture allows separate components to be stopped and restarted
without a complete system refresh, a software watchdog can stop and reset the
offending process or processes while the rest of the system continues to run.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 12

Figure 8. Priority inheritance can prevent lower-priority threads from blocking the
execution of higher-priority threads.

Summary

In response to customer demands for more applications, features and services,
and to economic pressures, automakers are consolidating non-safety-related
and safety-related components on a single platform in their vehicles.

A microkernel OS can provide a full set of OS features to support consumer
demands while ensuring that the system meets its safety requirements. The
trusted code in a microkernel OS is simple and small, with a well-tested and
short execution path that is granted system-level privileges. In short, a
microkernel OS is inherently appropriate for safety-related systems.

When a system design calls for two different operating systems to co-exist on a
single piece of hardware, a hypervisor is an effective solution. Nonetheless, our
experience building both in-vehicle infotainment systems and safety-critical
systems (including systems built with the IEC 61508 SIL3-certified QNX OS for
Safety) suggests that a single microkernel OS can provide all the features
needed for infotainment systems and the dependability and isolation
guarantees required by ISO 26262.

Architectures for ISO 26262 Systems with Multiple ASIL Requirements

QNX Software Systems 13

Notes

1 Roger Rivett, “The Challenge of Technological Change in the Automotive Industry”, in
C. Dale and T. Anderson (eds.), Achieving Systems Safety: Proceedings of the
Twentieth Safety-Critical Systems Symposium, Bristol, UK, 7-9th February 2012,
London: Springer-Verlag London Limited, 2012, p. 35.

2 ISO 26262 Road vehicles—Functional safety, first edition, 2011.
3 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related

Systems (E/E/PE, or E/E/PES)
4 Tom Anderson, Letter to the editor, Safety Systems: 22-3, May 2013.
5 ISO 26262-6, 15 November. 2011, p. vi.
6 Reason, James. Human Error. Cambridge: Cambridge UP, 1990. See also Chris

Hobbs, “Building Functional Safety into Complex Software Systems”, Parts I and II,
QNX, 2011.
< www.qnx.com/download/feature.html?programid=21862>
<www.qnx.com/download/feature.html?programid=21978>

7 See also ISO 26262, Part 6, Annex D.
8 Shiv Nagarajan, “Processor Affinity or Bound Multiprocessing? Easing the Migration

to Embedded Multicore Processing”, QNX, 2009
<www.qnx.com/download/feature.html?programid=20412>

9 Briand, Loïc and Daniel Roy Meeting Deadlines in Hard Real-Time Systems: The
Rate Monotonic Approach, IEEE Computer Society, 3rd ed., 1999.

About QNX Software Systems

QNX Software Systems Limited, a subsidiary of BlackBerry Limited, was founded in
1980 and is a leading vendor of operating systems, development tools, and
professional services for connected embedded systems. Global leaders such as Audi,
Siemens, General Electric, Cisco, and Lockheed Martin depend on QNX technology
for their in-car electronics, medical devices, industrial automation systems, network
routers, and other mission- or life-critical applications. Visit www.qnx.com and
facebook.com/QNXSoftwareSystems, and follow @QNX_News on Twitter. For more
information on the company's automotive work, visit qnxauto.blogspot.com and
follow @QNX_Auto.

www.qnx.com

© 2014 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, and
Aviage are trademarks of BlackBerry Limited, which are registered and/or used in
certain jurisdictions, and are used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

302266 MC411.148

http://www.qnx.com/
https://www.facebook.com/QNXSoftwareSystems
http://twitter.com/QNX_News
http://qnxauto.blogspot.com/
http://twitter.com/QNX_Auto

