
Not for general distribution. Intended for Advanced Sterilization Products 1

WHITEPAPER

Seven fatal mistakes to
avoid when choosing an
embedded OS

Malte Mundt
Senior Field Application Engineer

QNX Software Systems
1/11/16

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
2

Seven fatal mistakes to avoid when
choosing an embedded OS
Abstract

How would you go about choosing an embedded Operating System (OS) for the next
generation of your product? As long as you do not have to actually do it, you may think that the
choice should be based on the objective evaluation of various criteria, such as features, cost,
support options, etc. In reality, however, there are seven completely different aspects that push
executives, directors, managers and engineers towards fatal traps. Just like quicksand, you do
not notice that you stepped into one of them until you get into trouble. Typically, you realize this
towards the end of your project, in the middle of your product's lifecycle, or at the beginning of
the next project when trying to add advanced features. Thus, in this whitepaper we will make
you aware of those pitfalls and shallows you ought to avoid when choosing an embedded OS,
without drifting off into a lot of technical details.

Mistake #1 – Not choosing at all

Your reading this means that you won’t make the worst mistake of them all: not consciously
choosing your embedded OS. However, often decision makers are so consumed with their
application that they do not give much thought to making a conscious OS decision. They
assume that what is shipped with the hardware is probably “good enough”. This will impact the
success of your company more than expected, because as soon as you start development on a
particular OS, it is the beginning of building a stack of software that will later become legacy –
either yours to handle five to seven years from now, or your successor’s.

The sad aspect about this is that managers making this mistake will never know how their life
could have been different. So what’s the issue with a general-purpose OS like Windows, as long
as it does what it is supposed to do? The problems start when it doesn’t, and you quickly find
out how limited your control over such an OS is. Fixing problems that should never have
occurred in the first place costs a lot of money. We will discuss why making a conscious OS
decision will largely reduce the risk of increased project costs and missed deadlines.

Mistake #2 – Doing what “all the others” do

It is deeply embedded – pardon the pun – in the human psyche: If not sure, just do what
everyone else does, and you will be fine. Eons ago, this was important for the survival of our
species: using the tried and tested paths could save your life.

In today’s modern world however, constant change is part of our lives, and innovation is at the
heart of the embedded industry. Hence, when it comes to deciding for an embedded OS, it can
be very dangerous just to rely on what people do on the left and the right. Remember the city of
Pompeii that was completely destroyed by a volcano eruption? Why did the people of Pompeii
build their city so close to a volcano? Well, someone thought it was a nice place to build a
house, a few others followed, and for everyone coming afterwards the decision was easy:
“Hmmm, the volcano is close, but hey, it must be okay, all the others have built their homes
here, as well.” We can even imagine that someone choosing to settle further away possibly
might have been subject to remarks along the lines of being too anxious or overcautious. And at

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
3

this point, another strong mechanism in the psychological decision-making process kicks in:
Better stay in line, don’t be too different.

Not much has changed regarding the way people make decisions – only those who overcome
those ancient mechanisms when choosing their Embedded OS can prevail. Do not allow
yourself to get distracted by statements like “in this company, we always use X,” or “the
hardware vendor recommends Y,” or “at my university my professor said Z is the best choice.”
You, not them, will be held responsible for all kinds of issues. After the destruction of Pompeii,
the general response to the disaster was: “It was fate.” In embedded, when projects fail, it’s
usually accounted to “mismanagement”, “overly aggressive timelines”, “failed outsourcing
partners” – you name it. What usually doesn’t come to mind is that a lot of time (during
development, testing, and problem fixing) could have been saved by leveraging a proper
embedded OS and tool set.

Make your own decision, based on real, current, and future needs – and risks. Be prepared to
be frowned upon when you suggest an OS that has not been deployed yet inside your
department or company. Remember: companies in low-cost countries often compete by
employing very large development teams on a low budget; companies in high-cost countries
have to stay focused on innovation – doing things in a different, smarter way.

Mistake #3 – Continue using the OS you have “always” used

This is a tough one. You have been in the business for years, you have successfully completed
a few projects, and your company is doing well. So why not just go on with the OS that is
currently used in-house?

The safest route often seems to be the one we have taken in the past. This is why marketing
experts say that with growing age, it becomes increasingly difficult to convince campaign target
audiences to switch brands. Research shows that over time, people tend to become more and
more rigid in what products they prefer. With increasing age, the desire to avoid risks
sometimes grows so immensely that everything new is avoided.

Decision makers selecting an embedded OS must be aware that they likely face a resistance to
change. To find out if you are affected, verify what you think about some of the newer
inventions, e.g. do you think social networks are cool, or are you trying to stay as far away as
possible? Do you prefer printed books or do you own an eBook reader? Are you interested in
electric cars or do you think they don’t make any sense? We are not suggesting one or the
other, and of course not everything new is great and should be embraced automatically.
However, these and similar things can serve as a gauge to measure personal animosity to new
things in general, and this way, you can improve your level of objectivity. Changing the OS from
an existing solution to a new, “unknown” one involves a significant investment. On the other
hand, staying with what you have can be extremely limiting, and in many cases can even be the
higher cost option overall.

A smaller company, maybe even a startup, may just be reinventing your device, without the
burden of legacy concepts. Embedded systems are becoming very complex, and it is likely that
an OS strategy that was defined years ago cannot be applied any more. Remember: Standing
still means losing ground.

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
4

Mistake #4 – Avoiding spending money at all cost

When software is being made available free of charge, why does no one usually ask where it
comes from, who programmed it, or what the motivation behind offering it for free really is? It is
human nature to take advantage of free offerings: Who would refuse a free, cold beer, even if
it’s of questionable quality? “Heck, it’s free!” While consumers are slowly learning that free
software and services come at a price not measured in dollars (e.g., you have to accept ads,
you are willing to be tracked), this does not seem to apply for free operating systems like Linux.
So where are the downsides there?

Increasing cost pressure and wide availability drive some decision makers towards free OS
solutions such as Linux, which is usually chosen in good faith. The perilous gut feeling is:
“Surely, it is going to work fine. If not, we will fix it, and this fixing will cost us much less than
obtaining a commercial solution.” Surprisingly, although embedded Linux is free, there are many
“OS experts” making money with Linux – draw your own conclusions. Support for Linux is also
provided through a “community” – large at first sight, however the embedded portion is not so
large. For instance, the Linux “Real Time patch”, which is required to make it at least a little
more deterministic, is maintained by a very small number of people. Given that they could
decide to stop their activities (and in fact, this has already been considered several times), the
future of this package is questionable. It becomes clear very quickly that a seemingly free OS
solution just moves the cost elsewhere, into areas difficult to estimate, measure and track.

In our youth, every one
of us had idols. We
wanted to be like them,
because they were
very successful and
popular; they had
something that made
them outstandingly
different from the
average. Usually, the
longing for idols
disappears when we
have grown up. This is
somewhat unfortunate,
as it can be very
worthwhile to find out
what those who are
extremely successful
did to get there, to
learn from them. Let’s
look at some of the
largest and most
successful corporations – car makers, for example. Mercedes-Benz, Ford, and Audi deploy the
QNX embedded OS for their on-board infotainment and instrument cluster systems. And that is
surely not just because they can afford it: the choice of the embedded OS for devices installed
in millions of cars was certainly not taken lightly. So why do car makers go for a commercial OS
like QNX instead of a Linux variant?

 Hard deadlines: When a new car model is being announced, the software has to be
finished in time. Delays of weeks, or even months, to fix major issues, are not an option.

 Rock-solid technology: A commercial OS like QNX was not developed just for fun, it
was, from the ground up, designed to be deployed in devices that must be stable. Car

Figure 1 - In multi-million dollar projects, the choice of the embedded

OS is not taken lightly.

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
5

vendors cannot afford negative customer experience and publicity when their in-vehicle
systems run amok.

 Clear accountability: In those multi-million dollar projects it needs to be absolutely clear
who is responsible for each component, including the OS, both from a technical and
legal perspective. This is very difficult with “free” Open Source software.

 First-class support: Many little, and some bigger, companies offer consulting services
for Linux, but only a vendor that has written their OS themselves can offer the timely
and high-quality support that is needed to be successful.

Give commercial embedded OS offerings a try – they exist for good reasons. As with most, if
not all things in life, the same adage applies, “You get what you pay for.”

Mistake #5 – Going with a desktop OS instead of an embedded OS

In 2010, Stuxnet hit the factories, due to vulnerabilities in the Windows OS. Since 2014, security
holes in Windows XP are no longer being fixed. Both of these had huge cost impacts for device
makers and should never have been a problem. Those two major disasters made it perfectly
clear: an OS coming from a desktop context is the wrong choice for industrial control, medical
devices or building automation applications. There is a strong need for a purpose-built
embedded OS, one designed with security in mind, one that can be deployed for decades.

But why was a desktop OS deployed in embedded applications in the first place? In the past, if
one of the system's main requirements was advanced graphical representation of data
(visualization), Windows was selected because it was often seen as an OS with a strong focus
on graphics, while an embedded OS was in a black box, in charge of control tasks. Over the last
few years though, two major factors have changed:

 Embedded operating systems are no longer as limited in graphical features as they
used to be. Modern offerings like the QNX OS even provide smartphone-grade user
experience, dismissing the need for Windows-based systems for visualization.

 Security issues in desktop (and mobile) OSs have been on the rise. In today’s totally
networked world, basing your device on an OS requiring multiple security patches every
month poses a high risk, and great expense to both the vendor and the end-customer.

The big difference is that a
desktop OS was designed
for users, while an
embedded OS was
designed for developers, for
being at the heart of your
device. Typically, the
corresponding vendors care
about what you are doing
with it, and can participate
in the development with
you, by providing consulting
and engineering services,
which allows you to draw
from an expert knowledge
pool. And if existing
software is needed in your
project and cannot be easily

Figure 2 - Attacks on embedded systems have been on the rise, and

security patches are not the answer.

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
6

ported, a hypervisor allows your legacy OS to run together with your new one, side by side and
makes sure that mission critical tasks keep running even when Windows has to reboot.

Mistake #6 – Trying to find the fastest OS

Those who are trying
to make a conscious
OS choice are clearly
ahead of those that
are not, however the
challenge is finding
the right criteria for
your decision. Thus, it
is obvious to jump at
some that are easily
measurable. Memory
usage is no longer as
critical today, but
speed, or
performance, is.
Many dream of
driving a Ferrari, but,
if we could afford it,
we might quickly find

out that it doesn’t carry our shopping bags too well, and is very expensive to maintain. So, how
does this issue impact an Embedded OS?

Typically, software engineers tasked with benchmarking an embedded OS are looking at, e.g.:

 how fast can data be sent over the network

 how many complex mathematical computations can be done in a given time

 how much time it takes to react to an event (latency)

 speed of inter-process communication

The usual way of doing those kinds of tests is writing little programs that exercise the various
OS functionality constantly, in a number of variations, for a certain time. The big problem with
these measurements is that often they don’t have a lot in common with how the OS functionality
is used in real applications. The OS gives you, for instance, the possibility of having software
components in your system communicate with each other. Are they communicating constantly,
or even most of the time? Or are they doing what they have been designed to do, and
communicate only now and then?

Let’s take a look at a standard networking benchmark that constantly sends (and/or receives)
data. There are some important discoveries to be made beyond the data throughput:

To keep software components cleanly isolated from each other, an OS that is architected for
safety will treat the benchmarking program as an encapsulated process, and the network stack
as another process. With this approach, networking operation can take a bit more time, as the
data the benchmarking program wants to send needs to be moved (copied) over to the network
process by the OS core (kernel). In an OS designed for maximum performance however, the
network stack is linked into the OS kernel, and so is allowed to intrude into the memory space of
the benchmarking program, and snatch the data to be sent directly from there. While this is

Figure 3 - Fast cars are fun, but are they suitable for everyday tasks?

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
7

faster, the big downside is that problems caused by faulty networking packets or programming
errors can compromise the whole OS kernel.

The question is: would the difference in speed actually be noticeable in the real application?
What percentage of time does your software really spend inside OS functions? There is no easy
answer, unless you conduct an in-depth analysis. Experience, however, shows that it in many
cases it is a small percentage. Ideally you know what speed you actually need, but even if not,
one thing is for sure: The maximum is not the right number to look for, because as illustrated
above, OS speed always comes at a sacrifice: less stability, and more complexity, leading to
reduced safety and security for your product.

Experience has shown that a clean application design is the driving factor behind a well
performing system. No speedy OS can counterbalance wrong application design decisions but
a good OS can make your software more reliable, secure, and easier to maintain.

The implication is that the speed of your hardware is much more important than the speed of
your OS. The hardware runs the OS but more importantly, it runs your applications, which will
consume the lion’s share of hardware resources. Selecting a hardware platform with a bit of
headroom might cost a little more, but will save you precious development time, help avoiding
performance headaches, and leave power for future functionality.

Mistake #7 – Not planning ahead, aka the “we don’t need” syndrome

When looking at an embedded OS, people often come across QNX, and find that it offers:

 very sophisticated real-time capabilities for deterministic behavior

 versions with special safety certifications for industrial, automotive, and medical

 isolation of all software components from each other, and from the kernel, for maximum
reliability of the system, including the components you add, or buy from 3rd parties

 a comprehensive suite of development tools that allow in-depth system profiling and
analysis

For the less experienced decision makers, the list reads like a lot of nice to haves - in other
words, features that are perceived as not really needed. A key feature often mentioned in the
context of embedded operating systems is “real time”. Contrary to popular belief, this term
doesn’t mean “real fast”, instead it stands for being capable of providing deterministic behavior:
The system does what it was designed to do, always within the appropriate timeframe. For
example, pressing a key shall lead to a certain reaction in a certain time. Sometimes when
typing something in the address field of the web browser, it takes a moment to appear. This
moment may be brief but can be deadly if it’s about cutting the fuel to a malfunctioning jet
engine in an emergency. The crucial difference on the OS level is that some OSs are built to be
real time capable, while others have been “extended” (hacked) to provide a degree of real time
capability. Both call themselves “real time capable”, however the difference in reaction time can
be huge. But even if you could tolerate this in your device, never say you “don’t need a real time
OS”. A true real time OS is deployed in mission-critical devices, where low reaction time is
required, and if not met, can mean catastrophic failure, injury of people, environmental hazards,
or production of damaged goods. Beyond that, in those systems other appealing properties are
required as well: stability, reliability, availability, certifiability, and maintainability over at least a
decade, and much more. And we are sure that you will need at least one of those, if not several.

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
8

That’s why an embedded OS designed for real time is a good thing to look for – designed for
real time means designed for the most demanding application scenarios.

All of us try to make our
lives simple by comparing
and matching unknown
things with things we do
know. When buying a car,
everyone knows that they
usually have four wheels,
an engine, etc., and all of
them will bring you from A
to B and the crucial point:
all of them will do this
successfully in a very
similar timeframe. An
embedded OS is not a car
though. An embedded OS,
the way many think of it,
contains a task scheduler,
drivers for various hardware
components,
synchronization
mechanisms, “whatever”.
The big difference,
however, is the definition of
successful:

 completion of your project in a given timeframe and budget

 customer satisfaction, low warranty costs

 a scalable solution for the next product

Depending on the embedded OS selected, the cost and timeframe needed to get to your goals
can vary greatly. That's because the advantages of a well-designed embedded OS are not like
add-ons to a car (e.g., park distance control), but instead they are like the core measures of
safety – think seat belts, airbags, crush-zones, etc. We hope you never really need one of
those, but would you ever drive without them?

Conclusion
We have discussed why you should choose your embedded OS consciously, based on your

own analysis and current project needs, but also possible future requirements. You are now

more aware that a change from the seemingly proven path of the past may be necessary, and

that it is unlikely that this will come for free. And finally, you learned that speed is not everything,

but additional OS features supporting reliability and security absolutely are. Even if not all of

them are needed at the moment, they will serve as a great insurance for future challenges.

If you are interested in learning more about the selection criteria for an embedded OS, we

recommend reading the following:

Choosing an RTOS for Remote-care Medical Devices, by Justin Moon et al.: Deep-dive into

aspects to watch out for when choosing an embedded OS, from a technical point of view. As

you can imagine, for medical devices the OS must meet very high standards – so if you are

Figure 4 - They may have thought “We don’t need a real-time

OS”, but a more reliable OS would have been a good choice.

WHITEPAPER Seven fatal mistakes to avoid when choosing an embedded OS
9

building something less life-critical, there’s no way to go wrong when using an OS proven in

medical devices like eye laser control or blood pump systems.

http://www.qnx.com/download/feature.html?programid=22012

The Joy of Scheduling, by Jeff Schaffer and Steve Reid: The scheduler is at the heart of the

operating system, it governs when everything runs — system services, applications, and so on.

If the designer doesn’t have complete control of scheduling, unpredictable and unwanted

system behavior can and will occur.

http://www.qnx.com/download/feature.html?programid=21959

An Introduction to QNX Transparent Distributed Processing, by Yi Zheng: Everyone knows that

files and data can be easily shared in a network. However, a sophisticated embedded OS like

QNX enables sharing of any hardware resources in a network, without complex software

programming. This brings major advantages such as excellent scalability and a huge cost

saving potential.

http://www.qnx.com/download/feature.html?programid=22908

About QNX Software Systems

QNX Software Systems Limited, a subsidiary of BlackBerry Limited, was founded in

1980 and is a leading vendor of operating systems, development tools, and professional

services for connected embedded systems. Global leaders such as Audi, Siemens,

General Electric, Cisco, and Lockheed Martin depend on QNX technology for their in-

car electronics, medical devices, industrial automation systems, network routers, and

other mission- or life-critical applications. Visit www.qnx.com and

facebook.com/QNXSoftwareSystems, and follow @QNX_News on Twitter. For more

information on the company's automotive work, visit qnxauto.blogspot.com and

follow @QNX_Auto.

www.qnx.com

© 2015 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, and

Aviage are trademarks of BlackBerry Limited, which are registered and/or used in

certain jurisdictions, and are used under license by QNX Software Systems Limited. All

other trademarks belong to their respective owners. MC411.149

302266 MC411.148

http://www.qnx.com/download/feature.html?programid=22012
http://www.qnx.com/download/feature.html?programid=21959
http://www.qnx.com/download/feature.html?programid=22908
http://www.qnx.com/
https://www.facebook.com/QNXSoftwareSystems
http://twitter.com/QNX_News
http://qnxauto.blogspot.com/
http://twitter.com/QNX_Auto

