
Not for general distribution. Intended for Advanced Sterilization Products 1

WHITEPAPER

Hypervisor Part 1- What is
a Hypervisor and How
Does it Work?

Randy Martin
Product Manager

BlackBerry QNX
5/3/17

WHITEPAPER Hypervisor Part 1- What is a Hypervisor and How Does it Work? 1

Hypervisor Part 1- What is a Hypervisor and How
Does it Work?

Overview

While a lot of our customers are familiar with at least the high-level concepts of hypervisors, the
knowledge can be spotty – new technologies, terminologies, and applications can create knowledge
gaps. This whitepaper’s goal is to fill the knowledge gaps by laying the groundwork in an educational
manner. A focus on the embedded marketplace is assumed, with relatively technical explanations.

Summary

A hypervisor allows multiple operating systems to share a CPU (or CPUs, in the case of multicore chips).
While the basis of the technology is half a century old, the applications to embedded systems are new. In
this whitepaper, we examine the underlying technology for, and some implementation details of,
hypervisors specifically tailored for embedded systems.

WHITEPAPER Hypervisor Part 1- What is a Hypervisor and How Does it Work? 2

Introduction

Hypervisors are part of the broad area of computing known as “virtualization,” a concept that has been
around for half a century. Ultimately, the goal of a hypervisor is to allow sharing of hardware resources,
like an operating system (OS) does. In this whitepaper, we will discuss the salient differences between a
hypervisor and an OS, and illustrate how the hypervisor works.

History

In the mid-1960s, mainframes ruled the corporate computing world (such as it was). But these

mainframe computers were relatively rare and certainly extremely expensive (in the hundreds of

thousands of 1960s dollars – millions today). It is not like today, where everyone has their own

computer (and in fact, considering all the gadgets we carry around, everyone has multiple

computers, all more powerful than the old mainframes). Owing to their rarity and expense, the early

mainframe systems provided “timesharing” capabilities. This means that the machine would serve

multiple users, giving each user a slice of time during which their job would get executed. Once the

time slice was consumed, the machine would move on to the next user. For simplicity, each user

was given a virtual machine (VM). That is, from each user’s point of view, it looked like they had a

mainframe computer to themselves. The mainframe provided a hypervisor (kind of an “operating

system for operating systems,” if you like) that coordinated the multiple VMs. Because of that,

hypervisors are also known as Virtual Machine Managers, or VMMs for short. From the system

software designer’s point of view, hypervisors simplified their jobs because each user was

(relatively) isolated from each other and had a simple machine model. The hypervisor parceled out

resources (such as CPU time, memory, disk space, etc.) to the VMs running on the mainframe,

allocating equitable slices to each user. Even in the early days of mainframes, VMMs allowed

different OSs to run concurrently.

Hypervisors are prevalent in today's modern data centres and desktops (think Linux containers,

Docker, Xen, VMware, and so on), but they have only lately found their way into embedded

applications, such as medical devices and automotive infotainment and digital instrument cluster

systems. However, these hypervisors have significantly different purposes, constraints, and

characteristics from those for data centres and desktops, especially in the safety-critical field.

VM86

The history of hypervisors in microprocessors is interesting, and it bears directly on their architecture
today. With Intel’s introduction of the 80386 chip (October 1985), the first mainstream “virtualization” was
born. Recall that the IBM PC was based on the 8088 chip (an 8-bit bus version of the 8086 chip), and
could address 1M Byte of memory. Programs quickly outgrew the limited memory of the early PC, and so
the 80286 and 80386 chips evolved to provide more memory space for software. However, a desire to
run “legacy” software (that is, real-mode 16-bit 8086/8088 programs) was also present, so Intel created a
VM86 mode as part of the 80386. While the 80386 was a 32-bit protected mode processor, it could run
multiple instances of VM86 virtual machines. We’ will see how the VM86 operated below. It is important
to keep in mind, however, that as far as today’s virtualization goes, VM86 mode was an almost trivial
subset of the full power of the 80386’s native 32-bit protected mode. Modern VM implementations map
the vast majority of the underlying implementation.

WHITEPAPER Hypervisor Part 1- What is a Hypervisor and How Does it Work? 3

Protected Mode Virtualization

Interestingly, it would be another twenty years before microprocessors sported full implementation

of VMs. In November 2005, Intel released a Pentium IV model, and AMD followed in May 2006 with

an Athlon-64 model that allowed full protected mode virtualization. The ARM architecture got

hardware virtualization at the end of 2011 with the introduction of the Cortex A-15 family.

Theory of Operation

There are similarities and differences when comparing what a VMM does and what an OS does. To
understand them, let us step back and examine some details of how programs “run.” Then we’ will look at
how the VMM works.

Thread of Execution

A program runs because the CPU executes the program’s instructions, one after another, following

the flow of execution dictated by the program. This execution flow is often called a “thread” because

it winds its way through the code in memory, much like a thread winds its way through fabric. In this

model, the only reason a thread would not continue at the next sequential address is if there was

some kind of branch instruction (e.g., a jump, skip, subroutine call, go to – whatever you want to call

it) which would cause the thread to continue at a different location. But the key point is that the

thread follows the logical flow of execution of the program.

Of course, this one thread does not run forever. There are several things that can happen:

- The thread needs to wait for something to happen (e.g., user input, availability of a network
packet),

- The thread encounters some kind of a problem (e.g., accesses memory it does not have
permission to)

- A hardware event occurs (e.g., the timer fires and the OS decides it is time to schedule a
different thread).

How an OS Works

The handling of the above events is what the OS does. When the thread needs to wait for

something to happen, the OS is called, puts the current thread to sleep, and starts a different

thread. When the thread encounters a problem, the OS steps in, and either corrects the problem or

terminates the thread. In either case, a different thread may be scheduled to run as a result. And

finally, in the case of a hardware event, the OS either handles the event itself (as in the timer case),

or forwards the event on to a different thread (such as a device driver).

Of course, the above is an oversimplification of what an OS does, but it gets the point across. In a

real-time OS (RTOS) like QNX, the OS only steps in when it needs to. For the most part, the CPU

is running the currently scheduled thread (or threads in the case of multi-core processors). Only

when an exception occurs does the OS take over, figure out what to do (perhaps rescheduling

some threads), and then gets out of the way again.

How a Hypervisor Works

In a hypervisor, a similar set of events takes place, except at one level higher. Instead of talking

about an OS and multiple threads, we are now talking about a VMM and multiple OSs. The VMM

schedules an OS to run, and steps out of the way. Just like with the thread and OS model above,

the one OS does not get to run forever. There are several things that can happen:

WHITEPAPER Hypervisor Part 1- What is a Hypervisor and How Does it Work? 4

- The OS encounters some kind of a problem

- A hardware event occurs

Just like the OS had set up memory regions for its threads in order to define their (hardware)

resource “sandbox,” the VMM sets up memory regions (and other characteristics) for its OSs – let’s

call these “resource sandboxes.” When an OS steps outside of its allowed resource sandbox, the

VMM steps in and figures out what to do. In the VM case, the resource sandboxes are set up

specifically to give the OS the illusion of having its own machine – everything that’s “in” the sandbox

can be used by the OS, anything outside of the sandbox needs to be mediated by the VMM.

The other reason a VMM takes over execution is because of a hardware event. In order to prevent a

given OS from running forever, the VMM traps interrupts from the hardware, such as the timer tick.

Based on these ticks, the VMM can manage the scheduling of the various OSs.

Hardware Sandboxing

A natural question at this point is, “How does the VMM deal with different OSs all talking to the

same hardware device?” This is a fundamental consideration in the design and implementation of

VMMs and bears discussion. As you can imagine, most hardware is not designed to be concurrently

accessed by different, unrelated threads – this is the principal reason OSs have device drivers. The

device driver mediates the access from different, unrelated threads and presents itself as a single,

unified user to the hardware. In the VMM world, some kind of scheme is required in order to allow

different, unrelated OS device drivers to concurrently access hardware devices. In fact, there are

three principal methods (in order of decreasing overhead):

- virtualized,

- para-virtualized, and

- physical (also known as “pass through” or “native”).

Physical/Pass Through Devices

The easiest mode to deal with is physical. This is also sometimes called “pass-through” mode,

because the OS’s accesses to hardware are simply allowed; they are passed through to the

hardware, untouched. This is ideal for devices that aren't shared and do not present security risks.

For example, a simple serial control port might be dedicated exclusively to one OS. In this case, the

hypervisor is configured to allow physical / pass-through access to the port from that OS, and

denies access from any other OS (in fact, the other OSs do not even see the device – otherwise

they might try to automatically start drivers for it).

In a more complicated device, such as one providing DMA (direct memory access), such access

would not be allowed due to security. That is because a malicious (or even simply malfunctioning)

program on a given OS could program the DMA hardware to read or write memory outside of that

OS’s sandbox.

So, what happens with devices that are shared? For example, an Ethernet port connects several

OSs to the network. But not all OSs can have access to the hardware; their drivers are written to

assume that they alone have exclusive access to the device. This is where the other two options

come into play.

WHITEPAPER Hypervisor Part 1- What is a Hypervisor and How Does it Work? 5

Virtualized Devices

In virtualized mode, the device is completely emulated. The way this is set up is that the VMM is

configured such that any accesses within the device’s address range should be trapped (effectively,

the device is placed outside of any OS’s sandbox – no OS has access to the device). A handler is

set up for the trap, and the VMM supplies code that emulates the device. This means that when an

OS accesses a configuration register on the device, the hardware generates a trap. The VMM’s trap

handler examines the OS's request, figures out what it “means” in terms of the state of the emulated

device, and then resumes the OS with the emulated result. As you can imagine, certain types of

devices rely on many such operations to configure and operate their hardware – this results in a

dramatic slowdown in throughput.

Para-Virtualized Devices

Para-virtualized mode comes to the rescue. By abstracting the logical operation of the device from

its physical manifestation, we can significantly reduce the number of operations required to operate

the device. Para-virtualization achieves this by creating a logical “ideal” device, and inviting the OSs

to deal with that device, rather than the actual hardware.

Imagine a hard disk controller, for example. In the normal hardware case, the controller presents

from dozens to hundreds of registers dealing with such diverse operations as timing, caching, SATA

bus control, command requests and response queues, data queues, interrupt operation, memory

management, block size, power control, and so on. To “talk” to the disk, and perform conceptually

simple operations (such as “read block number 7”) requires many register-based operations. In the

virtualized model, this is slow (each individual register access causes the OS to be trapped, the

VMM to emulate the operation, and the OS to be restarted). Moreover, the emulation software itself

could be reasonably complicated – after all, it must keep track of all states associated with each

emulated register operation, and deal with sharing a simulated device whose underlying hardware

implementation wasn’t designed for sharing to begin with. Additional complexity equates to

additional cost and bugs.

Consider instead, an ideal disk device (one designed by software people, rather than hardware

people), where there is one register that contains the block number that we begin the read operation

from, and another saying how many blocks to read. In this case, the OS simply writes the value “7”

into the first register, and “1” into the second. The OS’s device driver then expects the contents of

one block, namely block 7, to show up in a buffer. In this manner, the only emulation that needs to

take place is the emulation of this ideal device, rather than the much more complicated actual

device.

There is a small, additional cost for para-virtualization – each OS must provide a native device

driver that knows how to talk to this para-virtualized hardware. Since the para-virtualized devices

are idealized, this is much simpler than writing a driver for real-world hardware (the example of the

ideal disk device above is only slightly simplified, but otherwise representative). Additionally, the

interfaces presented by these ideal hardware devices are standardized, so there are only a limited

number of such drivers to write to. A popular framework is called VirtIO, and it provides idealized

hardware devices for disk storage, console access, network interfaces, and so on. VirtIO is

supported by open source and commercial OSs alike.

WHITEPAPER Hypervisor Part 1- What is a Hypervisor and How Does it Work? 6

Hardware Acceleration

In situations where throughput is paramount (network adaptors, for example), hardware acceleration

is also available. Recall from above that the main problem being solved by the VMM (when sharing

peripherals) was the coordination of access to hardware from drivers in multiple, independent OSs.

What if the hardware supported this coordination directly? New technology in NICs (Network

Interface Controller) presents multiple, independent channels within the hardware. Using such

hardware, the VMM is responsible for assigning channels to OSs, and each OS then uses its

dedicated channel in the NIC, without regard to the other OSs running concurrently.

Conclusion

The virtual machine manager (VMM) or hypervisor has evolved considerably from the mainframe days of

the mid-1960s. Just like an OS scheduling threads, the VMM schedules OSs, and each OS has a

sandbox. As described, management of peripherals can have a huge impact on overall throughput.

About BlackBerry QNX

BlackBerry QNX was founded in 1980 and is a leading vendor of operating

systems, development tools, and professional services for connected

embedded systems. Global leaders such as Audi, Siemens, General Electric,

Cisco, and Lockheed Martin depend on BlackBerry QNX technology for their

in-car electronics, medical devices, industrial automation systems, network

routers, and other mission- or life-critical applications. Visit www.qnx.com and

facebook.com/QNXSoftwareSystems, and follow @QNX_News on Twitter.

For more information on the company's automotive work, visit

qnxauto.blogspot.com and follow @QNX_Auto.

www.qnx.com

© 2017 BlackBerry QNX. QNX, QNX CAR, Momentics, Neutrino, and Aviage

are trademarks of BlackBerry Limited, which are registered and/or used in

certain jurisdictions, and are used under license by QNX Software Systems

Limited. All other trademarks belong to their respective owners. MC411.159

302266 MC411.148

http://www.qnx.com/
http://www.qnx.com/

