Top Productivity Tips for Using Eclipse
for Embedded C/C++ Developers

Garry Bleasdale, QNX Software Systems, gbleasdale@qnx.com
Andy Gryc, QNX Software Systems, agryc@gnx.com

Introduction

This paper presents a selection of Eclipse IDE tips and tricks gathered from:
o the QNX® development community: our engineers, techies and trainers

e Foundry27, the QNX Community Portal for open development, where we
have an Eclipse IDE forum

e Eclipse.org forums
e public web sites and blogs that offer Eclipse-related expertise

The 27 tips described in this paper are the tips that we received from these
sources and identified as most interesting and useful to developers. We present
them here with the hope that they will help make you more productive when
you use the Eclipse IDE.

About Eclipse

A modern embedded system may employ hundreds of software tasks, all of
them sharing system resources and interacting in complex ways. This
complexity can undermine reliability, for the simple reason that the more code a
system contains, the greater the probability that coding errors will make their
way into the field. (By some estimates, a million lines of code will ship with at
least 1000 bugs, even if the code is methodically developed and tested.)
Coding errors can also compromise security, since they often serve as entry
points for malicious hackers.

No amount of testing can fully eliminate these bugs and security holes, as no
test suite can anticipate every scenario that a complex software system may
encounter. Consequently, system designers and software developers must
adopt a “mission-critical mindset” and employ software architectures that can
contain software errors and recover from them quickly. Just as important,
developers must employ tools and debugging techniques that help maintain
system integrity during the problem-solving process.

The tools can’t introduce changes that adversely or unpredictably affect system
behavior, particularly if the system is actively provid-ing service to users. And
once the developer has fixed any software component, the tools and underlying
operating system should make it easy to upload and monitor the fixed version,
again without affecting overall system behavior and availability.

QNX Software Systems 1

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Contents

INEFOTUCTION ...t e e e e e e ennees 1
ADOUL ECHPSE... ...ttt e e e e e e e e e e e e eaaa e 1
LO70] 01 (=T | K= OO PR PP TPPTR 2
TiP 1: SNOW KEY ASSIST...ceiitiiiiiiiiiiie ittt 3
Tip 2: KEY BINAING oeiieiiiiiiieie ettt e s e e e e e e e e e e e e e e e e eanes 3
Tip 3: Nice-to-know Keyboard ShOMCULS............eveeeieeiiiiciieeece e 4
TiP 4: REACIONNG ..ceiiiiiiei et 4
Tip 5: Call HIEIarChyuuviiieiiee et e e e e 5
Tip 6: Hyperlink NavigatioN.............ueeiiiiiiiiiieeieeeeieeeieeeeeeeeeseeeeesesesseeessssesesesssasennne 6
TIP 7: BOOKMAIKScciiiiiii ettt 6
Tip 8: Prompt for Arguments During LaunCh..........cccoccveiiiiiiiniceec e 7
Tip 9: Template PropoSalS...........eeiiiiiiiiiiiiiiiiiiiieieeeeeeeeeseeeseeeeeseseeseeesrererererera—... 8
Tip 10: View ASSEMDBIY COUE.......coviiiiiiiiiiiieeiieieeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseesssesesesasnranes 9
Tip 11: Detaching VIBWScoiiiiiiiieiiiiie ettt 10
LI o I 2 {018 o N I T [] o P PPPPPPPPIR: 10
Tip 13: Directory Path Variables..............oueuiiiiiiiiiiiiiiiiiieiiieseveeeveveseveveveveeeaevenenes 1
Tip 14: Custom Breakpoint ACHONScccuiuiiiiiiiiiee e 12
Tip 15: Manipulating Target Filescoo e 13
Tip 16: Automated Header File INCIUdE...........oovviiieiiiiiiiiieieeieeeeeeeeeveveeeveveanes 14
Tip 17: BIOCK EdItINGeeeeieiiieee et 14
Tip 18: Reformatting Codeocuuiiiiiiiiee et 15
Tip 19: FUNCLION COMPIELION.....oiiiiiiiiiiiieieeeeeee ettt eee e e eeeeeeeeeeseseseresanes 16
Tip 20: Automatic Structure ComMPIEtioN............ovvviiiiiiiiiiiiieieeieieieeeeeeerererererenanes 16
Tip 21: Prototypes, Definitions, and Implementations.............ccccoeceeeeiiieeeenee. 17
Tip 22: #define EXPanSION. ... 17
LI 222 U o (o =T aTo [== To [o 10 SRR 18
TiP 24: LOCAI HISTOIY ...ttt e 19
TIP 25: QUICK ACCESS ... eiieeiiee ettt e ettt e e e e e e e e e e e e e s eeeeaaeeaannes 20
Tip 26: COUE FOIAING «..eeeiieiiie et 20
Tip 27: FAVOIILe PIUG-INS. ..ottt e 21
Getting the EClIPSE IDE ... 22

QNX Software Systems 2

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Tip 1: Show Key Assist

The Eclipse IDE key assist feature opens a pop-up window with all the valid
shortcut keys for the current context:

1. Enter Ctrl+Shift+L to open the pop-up window.

A useful key assistant feature is that you can repeat the action to open the Key
Binding configuration window.

Aada Inciuge
Backward History

Build All

Close

Close All

Collapse

Collapse All
Comment/Uncomment
Commit...

Content Assist

Context Information
Copy

Copy Lines

Create Patch...

Cut

Debug

Delete

Delete Line

Delete Next Word

Delete Previous Word
Delete to End of Line
Duplicate Lines

Expand

Expand all

Explore Macro Expansion
Extract Constant - Refactoring
Extract Function - Refactoring
Find Declaration

Find Next

Find Previous

Find References

Find Text in Workspace

Find and Danlara

COrHDNINT+N
Alt+Left

Ctrl+B

Chrl+Ww

Ctrl+Shift+W
Ctrl+Numpad_Subtract
Ctrl+Shift+Numpad_Divide
Ctrl+/

Ctrl+al+C

Ctrl+Space
Ctrl+Shift+Space
Ctrl+C

Ctrl+Alt+Down
Ctrl+Alt+P

Ctrl+%

F11

Delete

Ctrl+D

Ctrl+Delete
Ctrl+Backspace
Ctrl+Shift+Delete
Ctrl+Alt+Up
Ctrl+Numpad_add
Ctrl+Numpad_Multiply
Ctrl+=

Alt+C

Alt+Shift+M

Ctrl+G

Ctrl+K

Ctrl+Shift+K
Ctrl+Shift+G
Ctrl+al+G :_'

ChelaE

Press "Cti+Shift+L" to open the preference page.

Figure 1: Using the show Key Assist feature

Tip 2: Key Binding

If you find that you use the same key sequences frequently, you can open the
Key Binding configuration window to create a shortcut.

To open the Key Binding window, open the Key Assist window (see Tip 1), then

repeat the action:

1. Enter Ctrl+Shift+L to open the Key Assist pop-up window.

2. Enter Ctrl+Shift+L a second time to open the Key Binding configuration

window. See Tip 2.

The settings in the Key Binding window let you define a shortcut for your key
sequence, and set the context for this shortcut. You can set exactly where the
shortcut will be available; for example, you may want the shortcut to be in an
editor window, but not in a target development window or an outline window.

QNX Software Systems

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

[B)ereferences 15[
| = -
5 Geoers
Kers o |
e famten
Command - [g [when [category Juser T4]
Busd Al Qs In Windows. Project -
Papryp— Projet
Buld Clean Project
Buld Project Quriep In Windows. Project. -7}
Assis (type: Bask Frogo e
Assist (type: Melp Propo =
wk Anit (ype: Parsig-bes Conflicting key |
7 ——JpyComand | Unbind Command | Restore Command | sequences
Click in binding | shown here
window and [- Bddeoet
serpbion: [Buld the selected project Conflts:
press key Conmrd T 1
sequence ‘ eadproma " Widows
J et 1 Widows
Bodeg: [culer] i ™
e [invindoms s
Context when
Restore Defaks Aol
shortcut operates s | Co |
[e |

Figure 2: Binding keyboard shortcuts to commonly used

functions

Tip 3: Nice-to-know Keyboard Shortcuts

The Eclipse IDE has many shortcuts, including those listed below:

Word completion Alt+/ Multiple presses cycles through choices.

Next editor Ctrl+F6 Brings up selection dialog.

Next perspective Ctrl+F8 Brings up selection dialog.

Indent/unindent Tab/Backtab

selection

Slide selection up/down Alt+Up/Down

Incremental find Ctrl+J Any navigation key ends find; use Backspace and
Esc.

Maximize/restore Ctrl+M

window

Match bracket/brace Ctrl+Shift+P Cursor must be just after bracket/brace (highlight
showing).

Delete row Ctrl+D For diehards missing good ole y and C-k.

Tip 4: Refactoring

The Eclipse IDE provides simple sequences to help you refactor source code.
The table below lists commonly used refactoring shortcuts:

Launch Alt+Shift+T Launch the refactoring menu.

Rename Alt+Shift+tR Renames selected identifier throughout project, and warns of conflicts
or shadowing.

Constant Alt+C Extracts and names selected constant.

QNX Software Systems

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

IDE also provides a preview of changes, so you can step through them before
committing to them.

)
LR [B] R ename global function ‘line_bind"
) T — E—
if ((g->wil |Changes to be performed
9->villl = (&) Rename global function tne_bind
vrite(
)

Step through change j
preview before accepting

Pt 1ine binall + B¢ He.c - qeonnfoconnifie ;’
struct gat s X} 7 i
void |2) apsifoc L@l
void |Orignal Source |Refactored Source
static con | Bind bd |

&1d, spsrdo, >
char return LINE_ERROR(errmo); return LINE_ERROR(erno);

if(parms) {

if(parms) {
apsinfo_cmnd _handeer(fd, parms, flags, 0, 0, 0]

oldfunc = apsinko_cmd_hander(fd, parms, flags, 0, 0, 0);
if (£d_into || }

g = ol || returnUNE NEXT;

tree(a |
) exse ¢ ||

e ealll®

return LINE_NEXT;

Figure 4: Selecting files to refactor

Tip 5: Call Hierarchy

Call Hierarchy shows a complete list of all functions that call the selected
identifier. To use Call Hierarchy, simply:

1. Select an identifier, then enter Ctrl+Alt+H.

struct registry *r, **pr;

eiva * lan-

1]

Emmw_seb(m‘,dw‘.uwm)-!mhm-c-hwl@ace

El @, registry_set(char *, char *, unsigned int) |
& @, memevent_init(agent_global *)
: @ {init memevent_funcs}()
B @, os_init()
! @ main(int, char * *)
- @, parse_args(int, char * *) (2 matches)

I int LRSS GETRd (const char *key, char *value, unsigned

Figure 5a: Using Call Hierarchy to view a complete list of
callers for a selected function or member

For example, if you are going to change a function prototype to add a new
parameter to that function, you can use Call Hierarchy to see all of the functions
that will be affected by your change.

View all entities called by a function

Call Hierarchy also lets you see all entities called by a selected function. To see
all called entities:

1. Click a hierarchy tree button to switch the call hierarchy tree.

QNX Software Systems 5

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Can show callers
or callees

& » & R mr—ﬁ &
Calls from main(int, char * *) - /oﬂ'ner_debug_gﬂ/mallocbad.c - in wo ce
= e, main(int, char * *)

@ options(int, char * *)

® . read_filenames(char *, char * * *)

@ dirname

++ exit(int)

® . display_filenames(char * *, int)

® . cleanup filenames(char * *, int)

-5

H-@-

Figure 5b: Switching the call hierarchy tree to show
entities calling or called by a function

This feature lets you quickly identify points at which a selected function
interacts with another service or an OS function, or calls into a subroutine
library.

Tip 6: Hyperlink Navigation

The Eclipse IDE provides hyperlinks to definitions and prototypes for identifiers.

int parse_ args(int argc, char *Fargv([]) {
int (-
int ey = 0;

while((c = getopt(arge, argv, "p:d:")) != -1) {
switchic) (g‘)
case 'd':
if (registry_set ("debug_device"”, optarg, 0) == -1) {
return -1;
¥
break;
default:
err = 1;
break;

}

Figure 6: Using hyperlinks to view definitions and
prototypes

To view definitions and prototypes:

1. Place (hover) the mouse over an identifier (function, structure, etc.) to
reveal the hyperlink.

2. Click on the link to view the identifier’s definition and prototype.

Tip 7: Bookmarks

Bookmarks are useful when you need to move around between different parts
of a program. To use bookmarks:

1. Go to your favorite (or most infamous) places in your code.
2. Right-click on the gray, left border.
3. Select Add Bookmark.

QNX Software Systems 6

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Bookmarks
- - show in margin

u int parse_args (int argc, char *argv(]) {

int c: - —
int prr = - Right-click in
¥ Tooole ereakpont margin to add
i new bookmarks
argv, —pews T Ty T
Add Bookmark... "debug_device”, optarg, 0) == -1
Add Task...
v Show Quick Diff Chrl+Shift+Q Bookmark
Show Line Numbers :
. window
Ll Preferences... :
Ul Bookmarks 53 : /
4 tems
= | Resource | path [Location [
bind entry point fds.c qconn line 69
main main.c qconn line 27
parse_args args.c qconn line 21
registry_set malloc code registry.c qconn line SS

Figure 7: Making and viewing bookmarks

To view the list of books, which you can use to jump to your bookmark in the
code:

1. Select Window > Show View > Other ... > General > Bookmarks.

Tip 8: Prompt for Arguments During Launch

If you run code with a command-line interface that requires arguments, you
may need to enter different arguments each time you run this code. Instead of
creating a large number of debug launch configurations, which you will
continuously have to edit, you can use the Eclipse IDE to prompt you for
arguments during the launch.

The Eclipse IDE lets you include a wildcard in launch configuration arguments,
so that every time you run that launch configuration you are prompted to enter
the remainder of the command-line.

To set launch configuration arguments:

1. Inthe Launch Configuration dialog window, click the Arguments tab. See
Figure 4b.

2. When you are prompted to enter a launch configuration argument, type in
the string, with all the parameters that you want to pass to the relevant
program when it executes.

QNX Software Systems 7

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Edit Configuration

Edit launch configuration properties

Name: Ipeek config (query)

(© Main | 69 Arguments PTG Environment \@ Upload | %5 Debugger | & Source | C

CJC++ Program Arguments:

${string_prompt}

Working directory on target:
[V Use default working directory.

Figure 8a: Editing the launch configuration arguments

When you run the program, the string you entered becomes the default, which
you can either accept or modify, as required.

[§] variable input B3

Please input a value

| OK I Cancel

Figure 8b: Entering an argument for a launch
configuration

Note that you must use the exact string for your argument:
${string prompt}; you can not substitute arbitrary strings for a string
underscore prompt.

Tip 9: Template Proposals

Template proposals can be very useful for code, such as exception blocks, that
you do not always run. If a section of code has a large number of exception
blocks and you want to only fill in all braces, you can use template proposals.
Template proposals are also useful for loops, because they fill in all the parts
that are needed for the loops.

The IDE comes with many default templates, but you can also add your own. In
addition, you can enclose the lines you have selected in the editor with a
construct, such as a scope and temporary variables, in order to perform some
specific operation.

To use a template:
1. Type in the first few letters of the template.
2. Press Ctrl+Space, and select the templates you want to apply.

3. Once a template has been expanded, you can enter strings in individual
fields, using the Tab key to move through the fields, which the IDE fills in.

QNX Software Systems 8

Top Productivity Tips fo

r Using Eclipse for Embedded C/C++ Development

I [=] B3
Templates v i
Create, edit or remove templates:
Name Context AutoIns... | & New... |
author Comment author name on
[catch CjCH++ catch block on Edit... I
™ class CiCH++ class declaration on
& comment CiC++ default multiline comment on Remove I
™ do CiCH++ do while statement on
™ else CiCH++ else block on Restore Removed |
elseif CJCH+ else if block on
= m ReveEs D
M for CJCH++ for loop with temporar... on
=S CICH++ if statement on
[ifelse CiC++ if else statement on —'M
& main CJC++ main method on Export |
[namespace CjC++ namespace declaration on el
™ new CJC++ create new object on
M stderr CJC++ print to standard error on
& stdout CICH++ print to standard output on _,_‘
= e == = :
Preview:
ifor (${var} = 0:; ${var} < ${max}; ++§{var}) ;I
§{line_selection}§{ sor)

A3
‘ Type keyword Ctrl+Space]

Tab walks through all fields \

fox]
© fork{ void) pid_t;
PEL @ forkpty(int *amaster, char *name, struct termiog
ret [forsfor oo
) =) for - for loop with temporary variable

=

)

Figure 9: Applying templates

for (int [= 0: var < max: ++var) (
|

Tip 10: View Assembly Code

Many developers are not aware th

at they can use the Eclipse IDE to view

assembly code. Though you will usually only want to open editable source code
files, getting a look at the assembly code can be very useful if you are

debugging with techniques such a

If you need to examine closely a s
or if you are optimizing short code

s stack traces.

mall segment of code lying in a stack frame,
snippets, the IDE gives you a quick way to

see the opcodes directly to help you understand precisely what is executing.

Once you have compiled your files and you have the object files or the

executables available in the IDE’s
assembly code.

project view, just open the files to see the

5 projectex 83\ Z Of (c] agentic f@he.c f@memaned.c [lclargsc [lc] peske w
=5 Y| 43a: es fc £ £ 22 call 43b <peek+0xS7>
®© 192.168.223.128 | 43b: R_386_PC32 exit
B-ES deoxs 43f: 83 c4 10 add §0x10,%esp
B-ES flewatch 442: 89 £6 mov %esi,%esi
@125 FlashToRam 444: o9 leave
@15 imagemanp 44S: c3 ret
@0 Medas200 446: 89 £6 mov tesi,tesi
&5 memspeed
BHES peek 00000448 <parsearg>:
@42 Binaries 448: S5 push %ebp
©-5) Includes 449: 89 eS mov %esp,tebp
B am 44b: 83 ec 18 sub §0x18,%esp
B mps 44e: 8b 45 Oc mov Oxc(%ebp),teax
-G ppe 451: 8b 10 mov (veax) , vedx
B sh 453: 84 04 95 00 00 00 00 lea OxO(,%edx,4),%eax
B x86 45a: 8b 55 08 wov Ox8(%ebp),sedx
8o 45d: 8b 04 02 wov (vedx, veax, 1), veax
Q) pesk-[xel| 460: 40 inc %eax
@) peeko-[x]] 4613 8a 10 wov (veax) , ¥dl
» Makefle || 463: 80 c2 ot add §Oxef,%dl
B o9 466: Of be c2 movsbl %dl,%eax
@5 peek g-[4] 469: 83 £8 3c cmp §0x3c,teax
@b pesko=[%|| 46c: Of 87 6e 01 00 00 ja 5e0 <parsearg+0x198>
[Makefie || 472: 8b 04 85 e4 00 00 00 mov Oxed(,%eax,4),%eax
[Makefile 475: R_386_32 .rodata
8-[3 peekc 479: £f e0 Smp *yeax
[common.mk 47: 90 nop
[Makefle 47c¢: ©7 05 00 00 00 00 01 movl §0x1,0x0

Figure 10: Viewing assembly and source code

QNX Software Systems

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Tip 11: Detaching Views

The Eclipse IDE allows you to detach views from the main window. This feature
is particularly useful if you are using multiple monitors.

To detach a view, simply right-click on its header and select Detach. To
reattach a view to the main window, either right-click on the view and select
Attach, or drag the view’s title bar to the location where you want it to dock.

.c] imamanip.c] .c] events.c | L] registry.c | .| args.c | |.c| main.c

- S

Ve 3 NN - hvd
jystems. iS4y East View QO <l é’| S
et ans III.IUHIIOUUII ?Ubll as
v Dstached endencies and build-order

=
:onf 1-:‘1»211!:: q uleyif= y J

See b
1 Close nerate a makefile for you, such
projects are caned Managed Make projects
Twritten | Some projects, known as Standard Make

: code £i projects, allow you to define your own makefile

Sample Makefile

A sample Makefile

This Makefile demonstrates and exp
Make Macros, Macro Ezxpansions,
Rules, Targets, Dependencies, Coms
Artificial Targets, Pattern Rule,

v
Commmmmnbm b mand vrd bl o W A ;,..r'
. (I l »
server_lnl

Go To: . |
all Topics " Search 0. Related Topics

(0 Bookmarks 5 Index

HHRBERR

+

*nexc;
global;

Figure 11: Attaching and detaching a view.

Tip 12: Group Launch

The Eclipse IDE can be configured to launch several processes at the same
time. Multiple process launches can help debug multiple, interacting processes,
such as:

e aserver and its client
e adriver and its calling applications

¢ an HMI and supporting processes

QNX Software Systems 10

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

[®)pebug Configurations [x|
Create, manage, and run configurations l@\
[X9 yae: [Server_and_client
ltype fiker text ~
[Launches .
C Attach
r: E/EH’ Ltta‘c‘to Lc:‘ I
=2 C; c++ P°°: ka‘ B34 [CICH+ QNX QConn (1P)::tst_server Configuration [debug —-’
€] CJC++ Postmortem| » e
5-Ca CICH-+ QNX Attach A7 CjC++ QNX QConn (IP)::testt Configuration debug
(' debug memory EdR...
(4 CiC++ QNX PDebug
=4 CJCH++ QNX QConn _add.. |
P
{4 peek config (qué
- Remove
(4 test1 Configural
o tst_server Conf
[€] GDB Hardware Debu |
= B Launch Group
B Server_and_Clié
| | |
A | i apply Revert
Filker matched 13 of 13 items
[T

Figure 12: Using a launch group

You can combine different launch configurations, such as running a local script,
kernel trace logging, or launching a remote process. If these are in a launch
group, the debugger will start each member that has been paused.

Tip 13: Directory Path Variables

Directory path variables in the Eclipse IDE are similar to soft links in UNIX or
Linux; they refer to a specific directory on your machine. You can use them if,
for instance, the default Eclipse organization is not convenient for your build
environment. A directory path variable is not restricted to a single project, so
you can create variables that you will use for multiple projects.

To create a new variable for a path link:

1. Launch the New Folder dialog window.

2. Enter the link folder in the filesystem, and click the Variables button.

To see what variables have been set:

1. Select Windows > Preferences > General Workspace > Linked Resources.

You will see the variables that are already pre-configured, and you will be able
to insert new variables.

QNX Software Systems 11

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

[E]new Folder _ (O] x|
Folder

= B
1, Link target does not exist.

Enter or select the parent folder:
I tst_server

1!
15 ths-cp _A_I
=& tst_server

+-= x86 j

Folder name: Ioutput

<< Advanced

[V Link to folder in the file system

| SOURCE_DIR foutput Browse... Variables...

Resolved location: C:loptisourcesioutput

@ Brish | concel |

Figure 13: Viewing directory path variable configurations

Tip 14: Custom Breakpoint Actions

Custom breakpoint actions are a convenient aide for debugging code with hard
to reproduce errors.

Debugging often involves running the same code repeatedly until a specific set
of conditions cause it to fail. This type of debugging can mean repeating the
same action dozens or even hundreds of times without error.

Custom breakpoint actions let you set up custom notifications and other actions
in your debugger, so that you can leave code running and focus on other tasks
until the code encounters an error in the code. You can use custom breakpoint
actions to play a sound or specified WAV file that alerts you when the code you
are troubleshooting reaches a breakpoint.

A breakpoint action can also have the Eclipse IDE create a log entry, or simply
print (the value of a specified variable, for example), and resume. This last
capability offers you a mechanism for effectively inserting printf statements
into your code without recompiling and downloading the code.

QNX Software Systems 12

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

I8 [=] B3
Actions v
Actions for this breakpoint:
Name | Type | summary |
Print loop status GDB Command Action print status

Untitled Sound Action Sound Action

C:\WINDOWS\Medi...

=D

Untitled Sound Action Sound Action

Available actions:
Name I Type I Summary I
Print loop status GDB Command Action print status

C:\WINDOWS\Medi...

| | e

Restore Defaults | Apply l

ok | cancel |

Figure 14: Setting breakpoint properties

Finally, you can set up multiple and different breakpoint options for each
breakpoint. To access all these functions:

1. Right-click on a breakpoint and select Breakpoint Properties.

The Eclipse IDE will open the dialog box shown in Figure 14, which shows the
options available for your custom breakpoints.

Tip 15: Manipulating Target Files

Target file manipulation is a feature specific to QNX’s version of Eclipse, the
QNX Momentics® Tool Suite. It is a very useful time-saving feature, and it is
often the subject of questions and queries in forums.

The QNX version of the Eclipse IDE lets you manipulate files on your target.
Often, developers debugging targets need to copy files to or from the target, or
even edit files directly on the target.

If you have the QNX Momentics Tool Suite, the IDE has a target filesystem
navigator, which you can use to explore directories and files on your target,
copy files to and from your target, and perform other actions (including deleting
files and launching executable files) just as though you were working on a local
system. With the target filesystem navigator, you can even edit and save target
files in the IDE without having to use telnet, vi, or ftp.

QNX Software Systems 13

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

File name ~
=8 192.168.223.128 A (3 system

.boot E) enum-usb.conf
.fontconfig ftpd.conf

.ph ftpusers
.subversion
.webkit

3 autoupdate
(3 bin

-3 db

-3 dev

. -3 system
Cafs

-3 lib g

PERPRE

Figure 15: Working with files on the target system

Tip 16: Automated Header File Include

The Eclipse IDE supports automatic inclusion of header files. To know which
include file your identifiers come from, select a function in your code and
enter Ctrl+Shift+N, or Select Source > Add Include.

The IDE will edit your source file to insert the appropriate include file. For

example, if you need an fopen () function with standard 1/0 and you do not
already have one in your source file, the IDE will automatically insert one for
you.

lint
Zwain(int argc, char **fargv) {

3 int f£d;
9
5 fa = ("/tmp/outfile”, O RDWR|O CREAT, O 666):
o) Paste ctri+v |
Comment/Uncommert 1+
Refactor » Add Block Comment Ctri+Shift+/
Detarans 5 Remove Block Comment Ctri+Shift+\
References » o] Shift Right
Search Text *» |- Shift Left
Correct Indentation Ctrl+1
Run As »
Debug As & Format Ctrl+Shift+F
Profle As > I SN
Team »
Content Assist Ctrl+S
Compare With & it

Figure 16: Configuring the IDE to automatically include
header files

Tip 17: Block Editing

The Eclipse IDE supports block editing. To use block editing, all you have to do
is select the block of code you want to change, and do one of the following, as
needed:

o Use Tab or Backtab (Shift+Tab) to move the block left or right, as needed.

e Use Ctrl and the arrow keys to move the block up or down.

QNX Software Systems 14

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

e Automatically comment out the whole block by entering Ctrl+/. This adds
C++ comment delimiters “/ /” (slash-slash) around the selected block.

e To use C comment delimiters, enter Ctrl+Shift+/. This key sequence adds
“/*x . **x/” around the selected code.

¢ Reformat the code block to match the source coding style you select by
entering Ctrl+Shift+F.

printf("sizeof msg: %d\n", sizeof msg);
while (1
MsgReceive (chid, &msg, sizeof (msg),
vig == -1) { [//was there an

Ctri+V
M sowee]) commenyuncomment G+
Refactor > Add Block Comment Ctri+Shift+/

Remove Block Comment Ctrl+Shift+\

Declarations

References » | Shift Right
Search Text » | Shift Left
¥ Debug As >
returt profile As » Add Include Ctri+ShiftsN
Team »
SRR % Content Assist Ctri+Space

Figure 17: Using block editing

Tip 18: Reformatting Code

The Eclipse IDE includes configurable C/C++ code formatter with predefined
styles. To use these styles:

1. Select Windows > Preferences > C/C++ > Code Formatter.

2. Choose one of K&R, BSD/Allman, GNU, Whitesmiths, or a custom style.
New code assumes the selected style. To apply a style to a code selection:
1. Select the code you want to format.

2. Enter Ctrl+Shift+F.

This feature offers flexible control of braces, whitespace,
keywords, line wrap, and indentation.

[®] Preferences B —(of x|
type filter text Code Style =1 -
- General 21| select a profile:
S C/CH+
Appeatance |Ke&R [buit-in] - Edit... move

Build Console
CDT build variables BSD/Allman [built-in]
GNU [built-in]
CodeiStyle Whitesmiths (built-in]
+ Debug . -
Editor * A sample source file for the code formatter pre
Environment 3
File Types #include <math.h>
Indaxar jclass Point {
Language Mappings bublic:
+ Make Point (double xc, double yc) :
®- New CDT project w x(xc), y(ye) {
Property Pages sett }
Task Tags double distance (const Pointé other) const;
Template Default Vi
% Help double x;
double y;

Install/Update

=

- QNX i o
< | »

= Run/Debug

& Team _.‘-'J Restore Defaults | Apply |

QNX Software Systems 15

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development
Figure 18: Reformatting code

Tip 19: Function Completion

One of the most popular time-saving features in the Eclipse IDE is Function
Completion. To use this feature, simply enter the first characters of a function
name, then Ctrl+Space to list matching functions.

As you enter more characters, the IDE narrows down the list of functions that
match your entry. At any time, you can:

1. Select a function from the list.

2. Use the Enter key to have the IDE enter the selected function into your
code.

Msgs|
if e MsgSend(int coid, const void* smsg, int sbytes 4 |
| © MsgSendPulse(int coid, int priority, int code, inf
| d e MsgSendPulse_r(int coid, int priority, int code,
] © MsgSend_r(int coid, const void* smsg, int sbyt
I © MsgSendnc(int coid, const void* smsg, int sbyt
I * e MsgSendnc_r(int coid, const void* smsg, int st
’ © MsgSendsv(int coid, const void* smsg, int sbyt—
| © MsgSendsv_r(int coid, const void* smsg, int sb
© MsgSendsvnc(int coid, const void* smsg, int st
tmp e MsgSendsvnc_r(int coid, const void* smsg, int
; if e MsgSendv(int coid, const iov_t* siov, int spaisl_vJ
4 »

Press 'Ctri+Space’ to show Template Proposals

'

Figure 19a: The IDE displaying matching functions

After it has entered the selected function into your code, the IDE will prompt
you for parameters, as shown in Figure 19b.

direntp [int coid, const void* smsg, int sbytes, void* rmsg, int rbytes |
MsgSend (coid, smsg,)|

Figure 19b: The IDE prompting for function parameters

Tip 20: Automatic Structure Completion

The Eclipse IDE’s Structure Completion feature is invoked just like the Function
Completion feature, by typing the first characters of a structure name, then
Ctrl+Space. It works in the same manner, offering a list of possible structures or
unions to choose from, and providing element names and types.

112 a io_fun
113 if (msg->i.nbytes <= ctp-> a dpp
114 © dpp : dispatch_t* 2
115 { ©id:int
116 buf = (char *) (msg+1): © info : struct _msg_info
117 buf (nsg->i.mbytes] = '\O o jouiiovt]
118 } © msg : resmgr_iomsgs_t*
pX) < Slss © msg_max_size : unsigned

= — © offset : int
‘get File System Navigator | £ Problems 3 . Console o revid : int
rrors, 0 warnings, 0 infos © size :int ~|
T
Figure 20a:

QNX Software Systems 16

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Automatic structure completion

You can configure the Eclipse IDE to —Auto activation:
automatically complete structures after a specified [V Enable "." as trigger

delay, as well as following specified key strokes. [V Enable "->" as trigger

To configure the delay: [V Enable "::" as trigger
3. Select Window > Preferences > C/C++ > delay (ms) ISUU

Editor > Content Assist.

Figure 20b: Configuring
automatic structure
completion on delay

4, Enter the delay value, in milliseconds.

Tip 21: Prototypes, Definitions, and
Implementations

The Eclipse IDE provides features that simplify working with functions:
e Highlighting a function and entering F3 will take you to the function.

e Hovering over a function and pressing F2 will open a read-only mini-editor
with the function definition.

There is no need to browse to the file containing the function definition. See Tip
22: #define Expansion.

ret = rmfile (sbuff, sbuff size, 0, path):

rmfilR int rmfile(char **pp, int *psize, int pos, const char *s) (-
1'etul'§ int size = *psize > 0 ? *psize : -*psize;
lint newsize;
int len;
‘l char *p;
Shan=lv:Ta DIR *dir:
— int ret;
4fqconn] struct dirent *d;

if (!s) «(

Figure 21: Viewing function information

Tip 22: #define Expansion

The #define expansion feature helps you understand what a #de fine actually evaluates
to, and what the compiler inserts when it uses that #de fine statement.

QNX Software Systems 17

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

/ Report error with slog (won't intermix output frc
slogf(SLOG SETCODE(SLOGC TEST, 0), SLOG WARNING,
"*Explore Macro Expansion - 3 step(s) v

#idefine _SLOGC_TEST (_SLOGC_PRIVATE_START + 0) ;J

/] S1é v'
// un Ll ’

if (9“ Original []Expansion #10f 3 . ‘
/+[G_SETCODE (_SLOGC_TEST,|— (_SLOGC_PRIVATE ST| =]

Alt+arrows will

d

expand a deep
i macro step-by-
—_— step
3 N\ T
ng, 0 othe
H
35 (1 item) LI | _bj i] _bJ

Press Al +Left or Alt+Right to step through macro e;panxion

Figure 22: Expanding #defines

To use this feature:

1. Select anidentifier set with #define.
2. EnterF2.

The IDE displays the definition, and allows you to browse step by step through the expansion.
You can browse through every expansion of nested macros as you encounter them. This
technique is also an excellent way to debug macros. It shows you what is actually in the
code, so you troubleshoot the code rather than what you think is in the code.

Tip 23: Undo and Redo

The Eclipse IDE supports undo and redo editing. To undo your changes or to
redo do them, before saving your file, enter Ctrl+Z to undo your last change, or
Ctrl+Y to redo what you just undid.

By default, the IDE tracks the most recent 200 changes you have made to a
file. You can change this value in your IDE Preferences.

Viewing original text

The Eclipse IDE places change bars in the margin of code you have changes

since the last file save. To view the original code, that is, the code as it was at
the time of the last file save, simply hover the mouse over the relevant change
bar.

} else

printf ("%s: left arm already low i\n", progname):;
if (MsgReply (rcvid, EOK, o

fprintf (stderr, "%s: !45<;Reply(i failed\n", progname):;
}

741}

Figure 23a: Viewing change bars

} else
printf ("$s: left arm already low

170 progname) ;
%> if (MsgReply (rcvid, EOK, NULL, 0) ==

n", progname);

Press 'F2" for focus)|

Figure 23b: Viewing original text

QNX Software Systems 18

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Tip 24: Local History

The Eclipse IDE keeps track of all changes made to a file since it was first
saved. Local history is the record of these changes, which you can view to see
all the specific changes that were applied to a file each time it was saved.

&L e
25> egrtmg..:,emort... t coid: //Con
#-35, Bint ar* outgoing string;
§ 1 3 =
. & Il & Refresh F5
& @ e » [t incoming_checksum;
i [ser. pyild Configurations Etiastatus; - A
% di- o S t server pid; //sex
1 aretarge t server chid; //ser

. % ser

o e

L @ 1 »

> interru | Compare With Show Local History ra
-5 memot Replace With 4 28

th @€ minanaA=rmrzvmm = ShoroBroiprt oo Sl n

Figure 24a: Showing local history
To access local history:
1. Open the Project Navigator.

2. Select Team > Select Show Local History.

Comparing files

Though it is not necessarily associated with a code management system, local
history is under the team menu, because it is akin to configuration
management.

(s_ istory = ﬁ] [#i Proble 52
cli.c &2‘%;’| v]@l = EB|l[2 errors, 16 w
Revision Time intinn .
B 12/12/08 4:06 PM mﬁ@;

B 12/12/08 3:05 PM (] exp

12/12/08 3:04 PM O ma

B 12/12/08 3:04 PM = & Warnir

B 11/12/08 3:00 PM = l & con

Figure 24b: Selecting compare mode

The local history feature is like having a mini-configuration management or a
mini-source management tool, because even if you are not using source
management, you can still compare any two saved versions of your file.

Further, if you have made multiple changes to a file, you can use a side-by-side
view to compare files visually, then select the changes you want to keep and
those you want to discard (Figures 13b and 13c).

(&) C Compare Viewer i 95 @ & @l
Local: ci.c | Jvocal history: dhc 11-Dec-08 3:00:40 PM

printf("attempting to establish connection with Prince ("accempting to establish connection Uil

coid = ConnectAttach (ND_LOCAL NODE, server_j
1£(-1 == coid) (an

perror ("Conm
H

Princt("Sending sTring: ¥S\n", OUTQOing_atring) Princt (“Sending string:

status = MagSend(cold, &outgoing_string, strlen)

status = MagSend(coid,
1f(-1 == t

1£(-1 == status) {
)2 s perzor ("MagS

)
PEANC ("received checksum=id from server\n", | |
prince ("MsgSend r status: %d\n", statu]

Figure 24c: Comparing file versions

QNX Software Systems 19

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

Configuring local history

Saving local history can consume large amounts of disk space. However, you
can configure the maximum amount of disk space the IDE will use for this
feature:

1. Select Windows > Preferences.

2. Configure the disk space limits.

Tip 25: Quick Access

The Eclipse IDE’s Quick Access pop-up offers an easy way to access items
when you are not sure where they are. To use the Quick Access feature:

1. Enter Ctrl+3 to launch the pop-up.

2. Enter the term you want to search.

rmI >

Editors l.c| *rmitree.c - gconnfrmtree.c
Views 4 Connection Information

P&, Malloc Information

@ Memory Information

(’Q Process Information

Signal Information

'@ System Information History

&) Terminal
Perspectives @ QNX System Information
Commands ® Close Perspective (Perspective Id: QNX Sys
Close User Assistance Tray - Close the user
Context Information - Show Context Infon
Convert to QNX Format
Edit - Perform a 'cvs edit’ on the selected fi

@ Format - Format Source Code
Menus <2 Back - Back to Compare rmtree.c Current &
New Eﬁl Migrate QNX 6.2.0 Projects - Convert 6,2.0

3 ;‘J QNX Example Neutrino Resource Manager |
Preferences @ Performance - TeamSYN

@ Terminal

00 O®O

Press 'Ctl+3' to show all matches,

Figure 25: Using Quick Access

The IDE searches your entire workbench for editors, views, perspectives,
menus, commands, or anything else that might contain the term you requested.

Tip 26: Code Folding

Code folding supported by the Eclipse IDE folds functions, structures and other
entities into a single line to make it easier to read through code. To configure
code folding:

1. Select Windows > Preferences > C/C++ > Editor > Folding.

QNX Software Systems 20

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

- General = : : -
& C/C++ —1| I Enable folding when opening a new editor
Appearance Select folding to use: Default C Folding ~ |
Build Console
CoTbuiverables I Enable folding of preprocessor branches (#if/#endif)
Code Style
@ Debug rInitially fold these region types: ———————————
= Editor ¥ Macros
- Content Assist I” Functions
™ Methods
Hovers WV Structures
Syntax Coloring I~ Comments
Templates ¥ Header Comments
Typing W Inactive Prepracessor Branches
Environment

Figure 26a: Folding code

Working with code folding
The following commands speed working with code folding:

o Hover help reveals the contents of folder code
e Ctrl+/ (*/" on the number pad) toggles folding on/ off.
e Shift+Ctrl+/ (“/” on the number pad) folds all expanded code.

(e} rbt_server.c 83 =0

|

®main(int argc, char **argv)[]

#say (int rcvid, char *text)[]

@scatic void
raise_left_arm (int rcvid)
*®1¢
if (left_arm state == LOWERED) {
+ * pretend we k -

printf ("$s:

® left_arm state = RAISED;
} else
printf ("$s: left arm already raised\n", pr
if (MsgReply (rcvid, EOK, NULL, 0) == -1) {

fprintf (stderr, "%$s: MsgReply() failed\n",
}
}

*handle pulse (struct _pulse *pulse)[]

Pontions (int arac. char **arawvi[] Y
«| | »

Figure 26b: Viewing the contents of folded code

Tip 27: Favorite Plug-ins

A particularity of Eclipse IDEs is that the basic product only contains a small set
of core functionality; a large proportion of functionality is provided by plugins.

The following are plugins Eclipse IDE users have found particularly useful:

Mylyn — a task tracker with interfaces to Bugzilla & Trac
(http://www.eclipseplugincentral.com/Web_Links-index-req-viewlink-cid-
587.html)

Grep Console — provides regular expression matching on console output
(http://www.eclipseplugincentral.com/Web_Links-index-req-viewlink-cid-
1275.html)

QNX Software Systems 21

Top Productivity Tips for Using Eclipse for Embedded C/C++ Development

SVN — plugins for Subversive (http://www.eclipse.org/subversive), and
Subclipse (http://subclipse.tigris.org)

NTail — Dynamic log file tail
(http://www.certiv.net/downloads/ntaildownload.html)

RSS View — RSS reader for bug tracking, developer forum, wikis, etc.
(http://'www.eclipseplugincentral.com/Web_Links-index-req-viewlink-cid-
369.html)

Getting the Eclipse IDE

If you do not already have the Eclipse IDE and want to try it, you can download
an evaluation copy of the Eclipse Momentics Tool Suite, which offers a full
embedded C/C++ development environment, from
www.gnx.com/products/evaluation/ .

You can also obtain an Eclipse IDE from Eclipse.org directly at
www.eclipse.org. If you choose this option, you will have to look after a few
things yourself. You will need to:

1. Supply your GCC tool chain, with your compiler, your linker, the GDB
debugger, and all of the other components you may need.

2. Install the CDT plug-in, for C or C++ development tools.

Once you have the plug-in and the tools and you have them configured, you will
be able to start using your Eclipse IDE for your embedded system development
work.

About QNX Software Systems

QNX Software Systems Limited, a subsidiary of BlackBerry, is a leading vendor of
operating systems, development tools, and professional services for connected
embedded systems. Global leaders such as Audi, Cisco, General Electric, Lockheed
Martin, and Siemens depend on QNX technology for vehicle infotainment units, network
routers, medical devices, industrial automation systems, security and defense systems,
and other mission- or life-critical applications. Founded in 1980, QNX Software Systems
Limited is headquartered in Ottawa, Canada; its products are distributed in more than
100 countries worldwide. Visit www.gnx.com and facebook.com/QNXSoftwareSystems,
and follow @QNX_ News on Twitter. For more information on the company's automotive
work, visit gnxauto.blogspot.com and follow @QNX_Auto.

www.gnx.com

© 2013 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, Aviage
are trademarks of QNX Software Systems Limited, which are registered trademarks
and/or used in certain jurisdictions. All other trademarks belong to their respective
owners.

http://www.qnx.com/
https://www.facebook.com/QNXSoftwareSystems
http://twitter.com/QNX_News
http://qnxauto.blogspot.com/
http://twitter.com/QNX_Auto

