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Abstract 
Memory errors are particularly harmful in embedded 
systems. These systems have limited memory 
resources, and are often deployed in environments 
where there are no second chances: a system brought 
down by a memory error that appears weeks or 
months after deployment may be unrecoverable and 
have costly or even disastrous consequences. 

To address the challenges presented by memory 
errors, developers can take advantage of tools for 
memory analysis and debugging, and OS architectures 
that minimize the impact of memory errors on the 
system. This paper discusses memory analysis 
techniques for solving memory problems such as heap 
corruption and memory leaks; and memory profiling 
for optimization of memory use in embedded systems. 

Introduction 
Have you ever had a customer say, “It was working fine 
for days, then suddenly it just crashed”? If you are a 
developer, it is unlikely that you haven’t heard this, 
just as it is likely that the it in question was your 
program, and that your program contained a memory 
error — somewhere. The problem was, and remains: 
where? 

In fact, most developers find memory errors and leaks 
hard to detect and isolate, and therefore difficult to 
correct. The problem they face is that, by the time a 

memory problem appears (often by crashing the 
program), the corruption has usually become 
widespread, making the source of the problem difficult 
— though not impossible — to trace1. The inherent 
difficulty of pinpointing the source of a memory error is 
compounded in a multi-threaded environment, where 
threads share the same memory address space. 

Memory errors in embedded systems 
If eliminating memory errors and optimizing memory 
allocation is important in all software systems, it is 
doubly so in an embedded system.  

First, memory is a precious commodity in embedded 
systems; it must be managed efficiently as well as 
reliably. Less than optimal memory allocation can 
waste precious RAM and hinder performance. Projects 
with inefficient memory allocation may be forced to 
remove useful software features, add more RAM, or 
upgrade to a faster processor, all solutions that reduce 
the value of the project or increase its cost. Inversely, 
efficient memory allocation can help maximize 
software functionality while minimizing hardware 
costs. 

Second, embedded systems are often deployed in 
environments where recovery strategies may be 

                                                                  
1  We are not discussing Heisenbugs, which by definition are not 

reproducible, but, strictly, memory errors, which are difficult to 
trace. For a discussion of Heisenbugs, see Chris Hobbs, 
“Protecting Applications Against Heisenbugs”. QNX Software 
Systems, 2010. www.qnx.com.  
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difficult or impossible to implement. With their 
propensity for showing up long after a system appears 
to be running reliably, memory errors are particularly 
insidious in these environments.  One only needs to 
consider the failure of the Mars Global Orbiter in 
January 2007, which John McNamee, NASA deputy 
program manager for Mars Exploration at the Jet 
Propulsion Laboratory, attributed to a memory error: 
“two memory addresses were overwritten”2; or the 
New Horizons mission to Pluto and the Kuiper Belt, 
which was saved only by “an amazing stroke of luck” 
when it encountered an “uncorrectable memory 
error”3. 

Addressing the challenge 
To address the challenges presented by memory 
errors in embedded systems, developers can use a 
suite of tools for memory analysis and debugging, and 
an RTOS architecture that minimizes the impact of 
memory errors on the system. 

Tools 
Memory analysis tools enable developers to quickly 
detect and pinpoint the source of memory errors such 
as leaks, buffer overruns, invalid deallocations and 
double frees. Just as importantly, these tools can 
expose subtle, long-term allocation problems that 
waste RAM and, in many cases, cause the system to 
fail weeks or even months after being deployed. 
Ideally, these tools work in an extensible environment 
such as Eclipse, which allows a memory analysis tool to 
share information with source code editors, debuggers, 
and other diagnostic tools, providing smoother 
workflow and faster error isolation of errors.  

                                                                  
2  Clinton Parks, “Faulty Software May Have Doomed Mars 

Orbiter”, Space News (10 January 2007),  www.space.com. 
3  Alan Stern, “NASA New Horizons Mission: The PI’s Perspective: 

Trip Report”, PlutoToday.com (26 March 2007), 
www.plutotoday.com 

Memory errors 
Memory errors are many and varied; they range from 
buffer under- and overruns, to multiple frees of the 
same memory block, to slow leaks. They can be 
classed, however, into two broad categories: heap 
corruption and memory leaks. Careful and thorough 
memory analysis is the most effective strategy for 
detecting and resolving both categories of error, as 
well as for optimizing memory use.   

Heap corruption 
To dynamically request memory buffers or blocks in a 
POSIX-based runtime environment, developers 
typically use the malloc(), realloc(), or calloc() 
function calls. To release these resources once they 
are no longer required, developers use free(). The 
system’s memory allocator satisfies these requests by 
managing an area of program memory called the 
heap. 

A program can erroneously or maliciously damage the 
memory allocator’s view of the heap, resulting in heap 
corruption.  For example, this corruption can occur if a 
program tries to free the same memory twice, or if it 
uses a stale or invalid pointer. 

These silent errors can cause surprising, apparently 
random application crashes. The source of the error 
often proves extremely difficult to find, since the 
incorrect operation may have been executed in a 
different section of code long before the crash actually 
occurred. 

Causes of heap corruption 
Heap corruption has multiple causes. For example, it 
can occur when a program:  

• passes an incorrect argument to a memory 
allocation function  

• writes before the start of the allocated block 
(underrun error) 
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• writes past the end of the allocated block (overrun 
error) 

• passes invalid information, such as a stale or 
uninitialized pointer, to a free() call 

The outcome of these errors can depend on several 
factors, making diagnosis difficult with conventional 
debug tools. Consider memory overruns and 
underruns, which are among the most elusive and fatal 
forms of heap corruption. In an overrun error, the 
program writes past the end of the allocated block. 
Frequently, this overrun causes corruption in the next 
contiguous block in the heap. When this corruption 
occurs, the behavior observed depends on whether 
that block is allocated or free, and whether it is 
associated with a part of the program related to the 
error. 

For instance, when an unallocated block becomes 
corrupted, a fatal error will usually occur during a 
subsequent allocation request. While the error might 
occur during the next allocation request, the actual 
observed outcome depends on a complex set of 
conditions that could result in a fault at a much later 

point in time, in a completely unrelated section of the 
program. 

Detecting sources of heap corruption 
Conventional debugging techniques rarely locate the 
cause of a memory error, because these errors can 
occur in one area of the code base but manifest 
themselves in another. In a multithreaded application, 
for example, a thread that corrupts the heap can 
cause a different thread to fault. 

This phenomenon occurs because threads interleave 
requests to allocate or release memory. Conventional 
debugging typically applies breakpoints — such as 
stopping the program from executing — to narrow 
down the search for the offending section of code. 
While this approach may work for single-threaded 
programs, it is often ineffective for multi-threaded 
execution, because the fault may occur at a difficult-
to-predict point. 

There are multiple scenarios in which an error can 
occur in one area, while manifesting itself in another. 
For instance, the problem can happen when: 

 

Figure 1: Using an error report to locate memory leaks. 
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• a program attempts to free memory 

• a program attempts to allocate memory after it has 
been freed  

• the heap is corrupted long before the release of a 
block of memory  

• the fault occurs on a subsequent block of memory  

• contiguous memory blocks are used 

These problems all point to the importance of using 
effective memory analysis tools. 

Memory leaks 
Memory leaks occur when a program allocates 
memory, then forgets to free it later. In its mildest 
form, a memory leak allows the program to consume 
more memory than it actually needs. While wasteful, 
the leak may pose little danger if the program 
terminates occasionally; most modern OSs recover the 
memory (including lost memory)from terminated 
processes. However, if the program has a severe leak, 
or if it  leaks slowly but never terminates—as may be 
required in an embedded system—the leak can 
ultimately consume all memory and cause system 
failure. 

Programs can also use memory inefficiently. For 
instance, a program may allocate memory for a large 
data structure or continually grow a dynamic data 
structure, then fail to use the structure for a long 
period of time. Though, strictly speaking, this behavior 
does not constitute a memory leak, it can waste a 
significant amount of memory 
nonetheless, and can severely 
impact system performance. 

Detecting memory leaks 
A good memory analysis tool can 
report a memory leak in the same 
way that it reports other memory 
errors. Figure 1 above shows how 

the analysis tool from the QNX® Momentics® Tool 
Suite’s Intergrated Development  Environment (IDE) 
displays several leaks. As with other types of memory 
errors, the developer can click on any reported leak to 
get a backtrace to the associated source code.  

Memory analysis 
Memory analysis consists of capturing memory-related 
events on the embedded target, importing that 
information into the development environment, then 
using visualization tools to pinpoint errors and to identify 
areas that need correction or optimization. 

Memory analysis workflow 
Memory analysis not only lets developers find errors, but 
it also helps them fine-tune allocations to minimize RAM 
usage and ensure long-term system stability. Figure 2 
illustrates the process of memory analysis, starting with 
observation and concluding with optimization. A well-
designed memory analysis tool will provide robust 
support for each step of the memory analysis process: 

Observe — First, the tool catches runtime errors, 
detects memory leaks, and displays all memory 
allocations and deallocations. 

Correct — Next, the tool allows the developer to trace 
each error back to the offending source line. 

Profile — Having eliminated obvious memory errors 
and leaks, the developer can now analyze memory 
usage over time, including average usage, peak usage, 

Figure 2: A typical memory analysis workflow. 
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and overhead. Ideally, this tool will provide a visual 
presentation of longer-term memory usage, allowing 
immediate identification of spikes in memory 
allocation and other anomalies. 

Optimize — Finally, using the tool’s profiling 
information, the developer can fine-tune each 
program’s memory usage to take best advantage of 
the system’s memory allocation algorithm. Among 
other things, this optimization can minimize peak 
memory usage and overhead, lower RAM costs, and 
prevent the system from slowly running out of memory. 

Observe and correct: the debug library 
A memory analysis tool typically works in concert with 
a debug version of the memory allocation library to 
catch memory errors. This library, which is dynamically 
loaded at runtime, allows the tool to report overruns, 
underruns, double frees, and other errors, without 
requiring any modifications to the application source 
code.  

To catch errors, the debug library records all memory 
allocations and deallocations — malloc(), calloc(), 
free(), new(), delete(), etc. — and performs a sanity 
check on their pointer values. It also intercepts string- 
and memory-related functions — strcmp(), memcpy(), 
memmove(), etc. — and verifies their parameters 

before using them. If the 
library detects an invalid 
pointer or incorrect 
parameter, it records the 
error and reports it to the 
IDE, making the inform-
ation available to the 
memory analysis tool. 

For example, if a 
program allocates 16 
bytes of memory but 
forgets the terminating 
NUL character, then 

uses strcpy() to copy a 16-byte string into the block, 
the library will report the error to the IDE. The error 
message can indicate the point at which the error was 
detected, the program location that made the request, 
and information about the heap buffer that contained 
the problem.  

As well as recording memory allocations and 
deallocations, a memory analysis tool should offer 
developers the option of recording a memory-analysis 
session, which they can play back at any time for 
analysis. 

Using a debug library 
Using a debug library should be straightforward. For 
instance, the QNX Momentics Tool Suite supports  the 
creation of a launch configuration that automatically 
uses the debug library when it starts a specified 
application. 

To illustrate how the debug library works, let’s say a 
process allocates a string of ten bytes, then attempts 
to copy eleven bytes of string data into that memory 
space. In response, the debug memory allocation 
library would intercept the malloc() call, the two 
strcpy() calls, and the free() call; see Figure 3. 

In this case, the library sees a mismatch between the 
parameter for str, which is allocated ten bytes, and 

 

Figure 3: Memory analysis works by trapping memory-related API calls. 
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the other parameter, 
which is a string of eleven 
bytes. It also detects that 
in the case of the free(), 
the buffer referenced by 
str is now being 
corrupted, and that the 
free() call will therefore 
probably fail as well. 

Figure 4 provides a closer 
look at what the IDE would 
show. At the top is a list of 
errors; below it is a back-
trace view that shows a 
call stack of the steps in 
the code that led to the error. A click on an error 
provides a backtrace, and a click on the backtrace 
shows the associated source code, displayed in the 
source-code editor. From there, it becomes a relatively 
simple matter to correct the problem, do a rebuild and, 
using the memory analysis tool, confirm that the 
memory error no longer occurs. 

IDE support for error tracking 
A well-designed IDE will provide several options for 
dealing with errors. For instance, the QNX Momentics 
Tool Suite intelligently tracks each memory error as a 
task and automatically annotates the program source 
code with a warning. When the IDE detects a memory 
error, it lets the developer: 

• let the program continue uninterrupted 

OR 

• stop the program and immediately switch control 
to the debugger view, where the developer can 
use the debugger features to pinpoint the problem 

OR 

• terminate the program and generate a process 
core dump file for postmortem analysis. 

Pointer checking — Mudflap 
Pointer errors are a common source of heap 
corruption, and they can be difficult and time-
consuming to correct. Mudflap in the development 
environment can significantly reduce the effort 
required to chase down pointer errors.   

 

Figure 5: A screenshot from the QNX Momentics Tool Suite’s 
Mudflap module. 

Mudflap provides runtime pointer checking capability 
to the GNU C/C++ compiler. Since Mudflap is included 
with the compiler, it does not require additional tools in 

Figure 4: Using the error report to locate the offending source line. 
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the tool chain, and it 
can be easily added to a 
build by specifying the 
necessary GCC options.  

Mudflap instruments 
risky pointer and array 
de-referencing 
operations, some 
standard library 
string/heap functions, 
and some other 
associated constructs 
with range and validity 
tests. Instrumented 
modules detect buffer 
overflows, invalid heap 
use, and some other classes of C/C++ programming 
errors. 

In the QNX Momentics Tool Suite, the instrumentation 
relies on a separate runtime library, which is linked 
into a program when the compile and linker options 
are provided for the build.  

Postmortem debugging 
If, for any reason, the above methods fail to trap the 
error and the program terminates abnormally, a 
background “dumper” utility can write a core dump of 
the program’s state to the host file system. This dump 
file, viewable with source debugging tools, provides 
the information needed to identify the source line that 
caused the problem, along with a history of function 
calls, contents of data items, and other diagnostic 
information. The developer can then debug the dump 
file just as he would debug an application on the target 
system, stepping through call stacks to determine 
what events led to the crash. 

Memory profiling 
After eliminating obvious memory errors with the help 
of a memory analysis tool, developers should have a 
stable system which they can begin optimizing through 
memory profiling.  Profiling is often done during a 
project’s integration phase, when it becomes 
important to gauge how the system consumes memory 
over time. 

Important measurements to make include peak 
memory usage; distribution of allocation sizes (16 
bytes, 32 bytes, etc.); long-term trends in memory 
usage (for instance, does  allocated memory slowly 
grow over time?); and overhead associated with how a 
program allocates memory. 

Memory use by process 
When optimizing memory usage, it is important to 
know how much memory individual processes use. 
First, if a process uses only a small portion of available 
memory — five percent, for instance — optimization of 
that process is unlikely to produce noticeable 

Figure 6: A post mortem debug session. 
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improvements. Second, 
techniques for optimizing 
different types of memory can 
differ significantly. 

Memory wastage 
The manners by which a 
program can waste memory 
are manifold: 

Linked lists of large data 
items — Linked lists or 
variable data structures are 
convenient to use, but can be 
very unpredictable. 

An application may add or 
remove objects from a linked 
list of large data items, for 
example, and the length of that 
list may vary because of 
application load or throughput. 

Data packet copy and 
forward — Programs “copy 
and forward” for a variety of 
purposes. For instance, a 
packet processing system may 
copy and forward every time it 
handles a packet, and it may 
issue a malloc() call (or, in C++, 
a new operator) for every copy.  

Many class constructions — 
Objects and object-oriented 
programming are very 
convenient, but they can 
potentially waste memory, 
especially when classes 
contain large data structures. Every time a program 
creates one of these structures, it allocates a certain 
amount of memory. 

In some cases, the program frees this memory 
inefficiently. In other cases, the program may continue 
allocating memory for a long time, then free a large 

Figure 7: Using an error report to locate memory leaks. 

Figure 8: A profile session that shows growing memory usage over time (blue line). 
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amount of memory all at once, rather 
than freeing allocated blocks as soon 
as they are no longer required. In still 
other cases, this memory may remain 
allocated indefinitely, even though the 
application is not using the data 
structure. 

Diagnosing memory wastage 
To help diagnose conditions of memory 
wastage, a memory profiling tool must monitor all the 
allocations and deallocations performed by the 
system. It should also keep a log of all allocations and 
match these with all the deallocations. This information 
permits the developer to go back and trace where 
memory is being used, which components are 
allocating it, and which components are freeing it. 

Figure 10: Distribution of memory allocations over time. 

For example, consider the memory profile in Figure 8, 
generated by the QNX Momentics memory analysis 
tool. Using this profile, it is a simple matter to identify 
peak memory usage, average usage, and, importantly, 

any anomalies in how the application uses memory. 
Note how the timeline graph at the bottom of the 
screen shows that memory allocation (ascending blue 
line) is growing over time, indicating potential memory 
mismanagement or a possible memory leak. 

Memory overhead 
To avoid memory fragmentation and ensure 
deterministic response, most RTOSs use a memory-
allocation scheme that divides the available heap 
space into smaller, fixed-size blocks. The memory 
allocator then distributes every allocation request 
among these blocks. To use memory efficiently, a 
developer must ensure that most allocation requests 
conform to these predetermined block sizes; 
otherwise, excessive memory overhead can result. 

For example, in Figure 9, the memory allocator has 
divided the heap into various fixed-sized blocks: four 
16-byte blocks, two 24-byte blocks, two 48-byte 
blocks, and so on. If an application does a malloc() of 
114 bytes, it has to grab 24 bytes, 48 bytes, and 
another 48 bytes, for a total of 120 bytes. The 
difference between the total block size and the 
memory requested (120-114=6) yields an overhead of 
roughly five percent. In other words, five percent of the 
memory allocated goes to waste. This number is not  
huge, but the more such calls the program makes, the 
more that the memory overhead will grow. 

Figure 9: Overhead incurred by a mismatch between a malloc() call and the  
memory allocation scheme.
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To help avoid this problem, a memory analysis tool 
must let the developer compare allocation requests 
with the memory allocator’s predetermined block 
sizes. With this information, he can quickly tune and 
optimize memory allocation on a per-application basis. 

Figure 11: Comparison of the pattern of allocation requests 
with block sizes used by the memory allocation scheme. 

To begin with, the memory analysis tool can display a 
distribution of memory allocations. For example, in 
Figure 10, the memory analysis tool displays two 
views: 

Bin Statistics — The distribution of allocation 
requests. The peak indicates that the program 
frequently makes allocation requests of 1024 bytes.  

Use Bins — How often the program has requested 
particular bin sizes over time. For example, the brown 
steps indicate multiple allocations of 1024 bytes and 
the green steps indicate multiple allocations of 16 
bytes. 

In Figure 11, the memory analysis tool displays bands, or 
block sizes. The block sizes in Figure 9 are 16, 24, 48, 
and 64, and that is close to what we see here. The Bands 
Allocation display at the top of the screen overlays what 

the program asked for with the bands (block sizes) used 
by the memory allocation algorithm. Using this graph, it 
is easy to determine whether a mismatch exists between 
the most commonly requested memory size and the 
block sizes used by the memory allocation scheme. 

RTOS architectures 
A discussion of RTOS architecture may seem out of 
place in a discussion of memory analysis tools. But as it 
turns out, a well-designed RTOS can make many 
memory problems much easier to isolate and resolve. 
To illustrate, let’s look at the three most common 
RTOS architectures: realtime executive, monolithic, 
and microkernel. 

Realtime executive architecture 
The realtime executive model is now 50 years old, yet 
still forms the basis of many RTOSs. In this model, all 
software components — OS kernel, networking stacks, 
file systems, drivers, applications — run together in a 
single memory address space. 

 

Figure 12: In a realtime executive, any software module can 
cause system-wide failure. 

While efficient, this architecture has two immediate 
drawbacks. First, a single pointer error in any module, 
no matter how trivial, can corrupt memory used by the 
OS kernel or any other module, leading to 
unpredictable behavior or system-wide failure. 
Second, the system can crash without leaving 
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diagnostic information that could help pinpoint the 
location of the bug. 

Monolithic architecture 
Some RTOSs, as well as Linux, attempt to address the 
problem of a memory error provoking a system-wide 
corruption by using a monolithic architecture, in which 
user applications run as memory-protected processes. 

 

Figure 13: In a monolithic OS, the kernel is protected from 
errant user code, but can still be corrupted by faults in any 
driver, file system, or networking stack. 

This architecture, shown in Figure 13, does protect the 
kernel from errant user code. However, kernel 
components still share the same address space as file 
systems, protocol stacks, and drivers. 

Consequently, a single programming error in any of 
those services can cause the entire system to crash. 
As with a realtime executive, where do you assign the 
blame? Where do you look? Is the problem a memory 
error or some other type of error? Unfortunately, there 
is often no easy way to find the answer. 

Microkernel architecture 
In a microkernel RTOS, applications, device drivers, 
file systems, and networking stacks all reside outside 
of the kernel in separate address spaces, and are thus 
isolated from both the kernel and each other. This 

approach offers superior fault containment: a fault in 
one component will not bring down the entire system. 

Moreover, it is a simple matter to isolate a memory or 
logic error down to the component that caused it. For 
instance, if a device driver attempts to access memory 
outside its process container, the OS can identify the 
process responsible, indicate the location of the fault, 
and create a process dump file that is viewable with 
source-level debugging tools. 

Meanwhile, the rest of the system can continue to run, 
allowing developers to isolate the problem and direct 
their efforts towards resolving it. 

Compared to conventional OS kernels, a microkernel 
also provides a dramatically faster Mean Time to 
Repair (MTTR). Consider what happens if a device 
driver faults: the OS can terminate the driver, reclaim 
the resources the driver was using, and then restart 
the driver, often within a few milliseconds. With 
conventional operating systems, recovery would 
require a device reboot — a process that can take 
seconds to minutes. 

 

Figure 14: In a microkernel OS, memory faults in drivers, 
protocol stacks, and other services cannot corrupt other 
processes or the kernel. Moreover, the OS can automatically 
restart any failed component, without need for a system 
reboot. 
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Conclusion 
The software in embedded systems is becoming very 
complex, making it harder than ever to pinpoint and 
stamp out memory errors. Memory analysis allows 
developers to visually pinpoint memory errors that 
conventional source debuggers are unable to detect. 
They can also help optimize long-term memory usage, 
thereby reducing RAM requirements and ensuring that 
the system does not run out of memory days, weeks, or 
months after deployment.  

Developers and project implementers should not wait 
for a memory error to manifest itself before they decide 
to use a memory analysis tool. Even if a system 
appears to perform acceptably, a memory analysis tool 
can not only reveal latent memory errors early, when 
they are easier to correct, but they can also uncover 
hidden inefficiencies that, when corrected, allow for 
substantial improvements in performance and 
memory usage. 
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