

Choosing an RTOS for Remote-care Medical Devices
Somu Vadali, Product Manager (Middleware)
Justin Moon, Product Manager (Medical)
QNX Software Systems
svadali@qnx.com, jmoon@qnx.com

Abstract
Three trends are driving a dramatic increase in the number
and diversity of remote-care medical devices entering the
market: aging populations in industrialized countries,
pressures on private and public healthcare providers and
insurers to reduce health care costs, and a new focus on
primary and secondary care. For example, in the U.S. alone,
sales of remote-care devices are expected to double to $1.3
billion in 2011.

This paper is about choosing an embedded OS for remote-
care medical devices — or indeed any system where
reliability, recovery and safety are critical differentiators. It
provides a high-level “shopping list” of requirements that
device manufacturers can use to evaluate OSs they are
considering for their remote-care medical devices.

An Expanding Market
It is no secret that the populations of industrialized countries
are aging. By 2020, the over-60s in France, for instance, are
expected to represent more than 27% of the population —
an increase of some three million seniors from 2010.
Germany expects a similar increase, and in the U.S. the
number of over-60s will increase from 58 million to
77 million, or 22% of the population. In Japan, at almost
43 million, they will represent a staggering 34% of the
population1.

While these aging populations continue to expect and
demand the best care that medical science and technology
can provide, the cost of this care continues to rise. There is
no guarantee that governments (taxpayers) and private
insurers (premium payers) will be willing — or even able —

1 Population data (rounded to the nearest million) is from the

United Nations Population Division, World Population Prospects:
The 2008 Revision Population Database, 2008.

Figure 1: A simple remote-care patient-monitoring network.

Choosing an RTOS for Remote-care Medical Devices QNX Software Systems

2

to continue paying for the same sort of tertiary care that has
come to characterize healthcare in industrialized countries.
As their demographics change and financial pressures
increase, jurisdictions everywhere are rethinking their
approach to healthcare.

Moving patient care out of the hospital
Organizations and jurisdictions from the World Health
Organization on down have identified healthcare systems’
disproportionate focus on hospitals and specialists, not only
as a key contributor to the rising cost of healthcare, but also
as an impediment to improvements to healthcare2. And, in
fact, healthcare delivery in industrialized countries has
already begun moving beyond the familiar hospital-centric
model.

For example, the Family Health Team program was
introduced by the Canadian province of Ontario in 2004
precisely to maintain the quality of healthcare while
addressing its current and future burden on provincial
coffers. The same province launched the Ontario
Telemedicine Network (OTN) for similar reasons, but also to
extend and improve healthcare delivery to remote areas3.

These and other similar initiatives focusing on primary and
secondary care rather than hospital visits are made possible
thanks, of course, to innovative thinking, but also to enabling
technologies such as digital imaging, video communications,
wireless technologies, and the advent of dependable,
portable and inexpensive medical devices that can be used
outside hospital settings, often by the patients themselves4.

Already, devices such blood glucose meters and lancing
devices for diabetics, and medical alert and medication
dispensing systems for the elderly are on the market and
gaining acceptance. Their benefits are clear. Small, relatively

2 World Health Organization. The world health report 2008: primary

healthcare now more than ever. Geneva: 2008. p. 11-12.
3 Ontario Telemedicine Network. www.otn.ca.
4 See for example, Low Cheng Ooi, Chairman of the Medical Board,

Changi General Hospital, Singapore quoted in “How will
technology change the future of healthcare?” (FutureGov 1 Sept.
2010): “The convergence of broadband penetration into homes
and the emergence of more sophisticated portable medical
devices is creating an opportunity for harnessing innovative
technology to push the point of healthcare delivery to the home.”

inexpensive devices that allow diabetics to monitor their
glucose themselves instead of visiting a clinic, or that permit
the elderly to stay in their homes instead of moving into “a
home” both improve their quality of life and reduce the cost
of caring for them.

Demand for these remote-care devices is driving market
growth. Writing in Bloomberg Businessweek in 2010, Olga
Kharif noted that U.S. sales for wireless consumer
healthcare devices reached US $600 million in 2010, and
may reach US $1.3 billion in 20115. In the same article,
Kharif lists just some of the heavyweights moving into the
market: Qualcomm, AT&T, Microsoft, General Electric …
While US $1.3 billion represents only a sliver of a worldwide
medical device market worth over US $200 billion annually,
its projected growth is nothing to be sneezed at.

The OS — A Key Differentiator
To gain and sustain market share, remote-care device
manufacturers will certainly have to demonstrate to users
(patients and healthcare providers), payers (governments,
insurance companies, users), and regulatory agencies (FDA
in the U.S., MDD in Europe, etc.), not just that their devices
are viable, cost-effective alternatives to current practices,
but that they are better and less expensive than their
competitors’ devices, and that they are safe.

A critical element and key differentiator in any electronic
medical device is its operating system. Everything above the
silicon depends on the OS: if the OS fails, everything fails.
And medical devices are not like desktops. Even for FDA
Class I and II devices, random failures and reboots are not
acceptable. Users have been conditioned to expect these
from their desktops, but they are unlikely to tolerate them
when their health or the health of their patients or loved ones
is concerned.

Clearly, medical device manufacturers are aware of how
much depends on the OS. In the world of embedded
systems, the hardware is the first decision point.
Manufacturers overwhelmingly choose their boards first,
then choose the OS, tools, etc. The exceptions are mobile
phone manufacturers, and medical device manufacturers.

5 Olga Kharif. “Qualcomm, AT&T Move in on 'M-Health'”.

Bloomberg Businessweek. 23 Aug. 2010.

QNX Software Systems Choosing an RTOS for Remote-care Medical Devices

 3

VDC Research reports that, in 2010, of manufacturers
surveyed in, for example, the automotive/rail/transportation
industry, just 9.3% chose the OS first; in telecommunications
and networking 20.8% projects started with the OS. In
contrast, 53.3% mobile phone projects started with the OS,
as did 36.4% of medical device projects6.

36.4%

Transportation

Telecomm

Mobile phone

Military & aerospace

Medical

Industrial automation

General

Consumer

Figure 2: Percent of projects selecting the OS first, by
industry (adapted from Balacco et al).

Requirements Overview
At the highest level, the requirements for selecting an OS for
remote-care medical devices can be separated into business
requirements, compliance requirements, and technical
requirements.

Business requirements
The business requirements driving OS selection for remote-
care medical devices are little different from the
requirements for other types of devices, and are familiar to
anyone in the business: cost, quality, time-to-market,
portability, support, vendor history, ecosystem and vendor
track record and long-term viability.

Compliance and pre-market approval
In the medical device industry, compliance and pre-market
approval are critical to success. Before a device can be

6 Steve Balacco, et al. 2010 Survey Year, Track 2: Embedded

System Engineering Survey Data, Vol. 3: Vertical Markets. VDC
Research. 2010. p. 19-20.

released on the market, the manufacturer must demonstrate
that the device complies with the relevant legislation in
jurisdictions where it will be sold, which often requires pre-
market notification: in the U.S., FDA 510(k), for example, the
Medical Devices Directive (MDD), and myriad national
standards in Europe and elsewhere.

Additional legislation, such as the U.S. Health Insurance
Portability and Accountability Act (HIPAA) and the Health
Information Technology for Economic and Clinical Health Act
(HITECH Act), governs medical data security and privacy.

These compliance requirements add considerably to both
the cost and the time needed to bring a device to market, but
they cannot — and should not — be bypassed. Though
agencies such as the FDA evaluate devices as a whole and
not their discrete parts, it is to a manufacturer’s advantage to
build its devices with an OS that has a history of use in
systems that comply with FDA or other regulatory bodies’
requirements. Using such an OS does not guarantee smooth
sailing through to certification, but it does greatly reduce the
unknowns and allow efforts to focus on the device-specific
design and development.

Technical requirements
The technical requirements for an OS for remote-care
medical devices can be grouped into three broad categories:

• Dependability — responds correctly to events in a
timely manner, for as long as required (sometimes
loosely called “performance”).

• Connectivity — communicates with diverse devices
and systems, either directly or through networks.

• Data integrity and security — data is safely stored, and
protected from unauthorized scrutiny.

Platform independence
To these requirements we can add platform independence.
While it is unlikely that any one OS will run on every hardware
platform available, an OS that will run on different hardware
architectures and multiple boards offers distinct advantages.
It allows a manufacturer to develop modular systems that
can be re-used for different product lines and different
versions of the same product.

For example, a manufacturer might market both professional
and a home remote-care patient monitoring systems (see
Figure 1 above). The home device, used by patients

Choosing an RTOS for Remote-care Medical Devices QNX Software Systems

4

themselves, might include only a subset of the capabilities
offered with the professional systems, and, therefore, might
not need the computing power required of the professional
system, and it might be considerably cheaper. Re-using the
same OS and modules built for the professional system in
home systems running on lower-cost boards would not only
simplify development of multiple product lines, but it would
also reduce their cost.

About Dependability
Dependability is a combination of two characteristics:

• Availability — how often the system responds to
requests in a timely manner

• Reliability — how often these responses are correct

In other words, a dependable OS is an OS that responds
when it is required in the time required, and responds
correctly. The question, then, is: “What should an embedded
OS in a medical device look like?”

RTOS Versus GPOS
If dependability is indeed essential to a system, this system’s
OS should be a realtime operating system (RTOS) rather
than a general purpose operating system (GPOS).

GPOS — general purpose operating systems
The essential problem with GPOSs is that they offer “best-
effort performance”. They may be slow or fast, wasteful or
efficient, but whatever they are doing, and however brilliantly
they do it, GPOSs can offer no hard guarantees that they will
always perform as required. GPOSs are designed to do many
things and to do them well, often extremely well, but they are
not designed to offer the strict guarantees of availability and
reliability required of a medical device.

Add to this the economic disadvantages of deploying a GPOS
in devices produced on a scale where even a $1 reduction in
per-unit hardware costs can save the manufacturer a small
fortune. These devices cannot afford the cost (not to
mention the heat dissipation) of multi-gigahertz processors.
Using a GPOS for such devices not only risks increasing the
cost of the device, but does so while offering less.

RTOS — realtime operating systems
In contrast to GPOSs, RTOSs are engineered to guarantee
availability and reliability. A designer building an embedded
system with an RTOS can be confident that the OS will
always be available when it is expected to be available, and
that it will always perform tasks as expected. This
fundamental characteristic of RTOSs not only ensures the
devices they run can meet the most stringent technical and
legislative requirements, but it can also save the device
manufacturer money7.

Input

driver

Network

User

applicationHMI

Filesystem

QNX
Neutrino

Microkernel

Graphicsdriver

Figure 3: In a microkernel RTOS, system services run as
standard, user-space processes. A failure in one user-space
is isolated to that space; the microkernel and other user-
spaces are protected.

RTOS Architectures
Simply stated, an RTOS is required for any embedded
system used anywhere except, perhaps, low-end consumer
disposables. Not all RTOSs are the same, however, and the
wise will examine closely each RTOS under consideration,
starting with their architectures, for architecture has a
profound effect on a system’s reliability and ability to recover
from faults. The three most common RTOS architectures are
realtime executive, monolithic, and microkernel.

7 For a more detailed discussion, see Paul Leroux, “Exactly When

Do You Need an RTOS?” QNX Software Systems, 2009.

QNX Software Systems Choosing an RTOS for Remote-care Medical Devices

 5

Realtime executive architecture
The realtime executive model is now 50 years old, yet still
forms the basis of many RTOSs. In this model, all software
components — kernel, networking stacks, filesystems,
drivers, and applications — run together in a single memory
address space.

While efficient, this architecture has two immediate
drawbacks. First, a single pointer error in any module, no
matter how trivial, can corrupt memory used by the kernel or
any other module, leading to unpredictable behavior or
system-wide failure. Second, the system can crash without
leaving diagnostic information that could help pinpoint the
location of the bug.

Implementing a realtime executive architecture in a remote-
care patient monitoring system makes sense only if the
system is not doing anything terribly important. Even a
device as simple as an in-home medication dispenser cannot
afford a crash. First, a crash would confuse the person the
device is supposed to be helping. Second, if the crash
causes data loss or corruption, the dispenser might skip or
double a medication, which could be dangerous or fatal for
the patient.

Figure 4: In a realtime executive, any software module can
cause system-wide failure.

Monolithic architecture
Some RTOSs attempt to address the problem of a memory
error provoking a system-wide corruption by using a
monolithic architecture in which user applications run as
memory-protected processes.

Figure 5: In a monolithic OS, the kernel is protected from
errant user code, but can still be corrupted by faults in any
driver, filesystem, or networking stack.

This architecture does protect the kernel from errant user
code. However, kernel components still share the same
address space as filesystems, protocol stacks, and drivers.
Consequently, a single programming error in any of those
services can cause the entire system to crash. As with
systems built on OSs with realtime executive architectures,
systems built with monolithic architectures may have
difficulties meeting the dependability requirements of all but
the most trivial medical devices.

Microkernel architecture
In a microkernel RTOS, applications, device drivers,
filesystems, and networking stacks all reside outside the
kernel in separate address spaces, and are thus isolated
from both the kernel and each other. This approach offers
superior fault containment: a fault in one component will not
bring down the entire system. With realtime executive and
monolithic operating systems, recovery would require a
device reboot — a process that can take seconds to minutes,
undermining the system’s ability to meet its availability
criteria.

Choosing an RTOS for Remote-care Medical Devices QNX Software Systems

6

Key RTOS Characteristics
The operating system’s architecture is of course
only one of many design characteristics that must
be evaluated when choosing an RTOS. Other
important characteristics include the RTOS’s ability
to:

• meet realtime commitments by pre-empting
lower priority kernel calls

• prevent unpredictable behavior and system
failure due to priority inversions

• guarantee availability by CPU resource
scheduling to prevent critical processes
starvation

• facilitate migration to multicore systems, and
ensure efficiency and correct behavior on
these systems

Meet realtime commitments
A pre-emptible kernel is essential to any system
that relies on tasks completing on time; that is, any system
that requires better than low-end consumer-grade
dependability. For instance, an alarm triggered when a
patient falls should be able to pre-empt processes drawing a
diagnostic display, as should processes required by the
communications stack in order to send the alarm out. It
doesn’t really matter how long it takes the system to display
a reminder to eat lunch if the person being reminded is lying
on the floor with a broken hip. The alarm and the
communications stack need to get in and summon help.

In most GPOSs, the OS kernel is not pre-emptible; that is, a
high-priority user thread can never pre-empt a kernel call,
but must instead wait for the entire call to complete — even
if the call was invoked by the lowest-priority process in the
system. To make matters worse, all priority information is
usually lost when a driver or other system service, usually
performed in a kernel call, executes on behalf of a client
thread. Such behavior can cause unpredictable delays and
prevents critical activities from completing on time.

In an RTOS, on the other hand, kernel operations are pre-
emptible. As in a GPOS, there are time windows during
which preemption may not occur; though in a well-designed
RTOS, these windows are extremely brief, often in the order

of hundreds of nanoseconds. Moreover, the RTOS imposes
an upper bound on how long preemption is held off and
interrupts disabled; this upper bound allows developers to
ascertain worst-case latencies.

To realize this goal of consistent predictability and timely
completion of critical activities, the RTOS kernel must be as
simple and elegant as possible. The best way to achieve this
simplicity is to design a kernel that includes only services with
a short execution path. By excluding work-intensive operations
(such as process loading) from the kernel and assigning them
to external processes or threads, the RTOS designer can help
ensure that there is an upper bound on the longest non-pre-
emptible code path through the kernel.

Protect against priority inversions
An RTOS with a microkernel architecture provides a
qualitative advantage in reliability over other RTOS designs,
but it cannot protect a system from all possible errors. One of
the more common — and notorious — errors is priority
inversion. The problem that, infamously, plagued the Mars
Pathfinder project in July 1997,8 priority inversion is a

8 Michael Barr, “Introduction to Priority Inversion”. Embedded

Systems Programming, Volume 15: Number 4, April 2002.

Solid state
disk

Wireless ECG/
network

Filesystem Peripheral bus
 drivers

Graphics
driver

Comm.
stack/drivers

SpO / blood
pressure

 monitors
LCD

2

Diagnostic
display

Patient data
aggregator

Patient alarm
control

Patient data
logger

Memory protected

Microkernel Message passing bus

Figure 6: In a microkernel OS, memory faults in drivers, protocol stacks, and
other services cannot corrupt other processes or the kernel. The OS can
automatically restart any failed component, without a system reboot.

QNX Software Systems Choosing an RTOS for Remote-care Medical Devices

 7

condition where a higher-priority task is prevented from
completing its work by a lower-priority task.

For example, the higher-priority task (alarm control) must
wait for the lower-priority task (data logger) to complete
before it can continue. A third task (data aggregator) has a
lower priority than the alarm control, but a higher priority that
the data logger. The data aggregator preempts the data
logger, effectively preempting the alarm control, even though
it has the highest priority of the three jobs. Blocked by the
data logger, the alarm control can no longer meet its real
time commitments.

High

Low
Time

Priority
Priority
inversion

Patient alarm control

Patient
data aggregator

Patient
data logger

Figure 7: The patient data logger blocks the patient alarm
control, even though the alarm control has a higher priority
— a classic priority inversion problem.

Priority inheritance
Priority inheritance is a technique for preventing priority
inversions by assigning the priority of a blocked higher-
priority task to the lower-priority thread doing the blocking
until the blocking task completes. In the example above, the
data logger would inherit the alarm control’s priority, and
hence could not be preempted by the data aggregator. It
would complete and revert to its original priority, and the
alarm control would unblock and continue, unaffected by the
data aggregator.

If there is no mechanism to ensure that the higher-priority
task completes its work on time, the data logger might be
preempted indefinitely. This unbounded priority inversion
would prevent the alarm control from meeting its deadlines.
With critical deadlines being missed, the consequences of
priority inversion can range from unusual system behavior to
outright failure.

Priority inheritance enables complex systems to meet their
guaranteed realtime commitments, dramatically increasing
system reliability. When selecting an RTOS for a medical
device, gaining an understanding of the mechanisms it uses
to prevent priority inversion, and confirming the
effectiveness of its priority inheritance implementation will
pay huge dividends, both during product development and
certification, and for the duration of its market life.

High

Low
Time

Priority

Priority
inheritance

Patient alarm control

Patient
data aggregator

Patient
data logger

Figure 8: The patient data logger inherits its priority from the
patient alarm control, which boosts its priority so that it
cannot be pre-empted by the patient data aggregator.

Guarantee availability
For many systems, guaranteeing resource availability is
critical. If, for instance, a key subsystem is starved of CPU
cycles, the services provided by that subsystem become
unavailable to other subsystems and, ultimately, to users,
with possible dire consequences. For example, a heart
monitor linked to a central monitoring system over a network
that loses connectivity may cause the central system to
incorrectly assume an alarm condition and dispatch help, or
— far worse — the patient may be in distress with no one
alerted and no help forthcoming.

Process starvation can have a variety of causes, from denial-
of-service attacks (DoS), to the addition of new software
functionality. Too often, just as the addition of a single car
can cause traffic on a highway to grind to a halt, the addition
of a new feature to a software system can result in
applications being starved of CPU time and failing to respond
and execute as required.

Historically, the solution to this problem was to either retrofit
hardware or to recode (or redesign) software — both

Choosing an RTOS for Remote-care Medical Devices QNX Software Systems

8

undesirable alternatives. While it would be technically
possible to push redesigned software to connected medical
devices, not only would the software redesign be costly, but
it would likely invalidate the device’s certification. Hardware
retrofits would amount to a product recall, with all the
attendant damages to the manufacturer’s reputation and
revenue.

Medical device manufactures must ensure that their
systems implement mechanisms to guarantee resource
availability, preventing resource starvation due to error or
increased application loads, and restarting failed processes
to maintain system integrity.

Partitions
Partitioning addresses the problem of resource starvation by
enforcing CPU budgets, either through hardware or software.
It prevents processes or threads from monopolizing CPU
cycles needed by other processes or threads. Two types of
partitioning are possible: fixed partitioning and adaptive
partitioning.

With an RTOS implementing fixed partitioning, the system
designer can divide tasks into groups, or partitions, and
allocate a percentage of CPU time to each partition. No task
in any given partition can consume more than that partition's
statically defined percentage of CPU time. For instance, if a
partition is allocated 30% of the CPU, the processes in that
partition can’t consume more than 30% of CPU time. This
allocated limit allows processes in other partitions to
maintain their availability, and can thus ensure that all key
processes are always available.

Fixed partitioning has a significant shortcoming, however.
The scheduling algorithm is fixed, so a process can never
use more CPU cycles than the allocated limit of its
partition, even if the cycles allocated to other partitions
are unused. Fixed partitioning protects against resource
starvation, but it also squanders CPU cycles and reduces
the system’s ability to handle peak demands. To work
around this limitation, systems designers must use more-
expensive processors, tolerate a slower system, or
restrict the amount of functionality that a system can
support. Thus, while fixed partitioning is a far better
alternative than system failure or hardware retrofits, it is
also far from ideal.

Adaptive partitioning
Adaptive partitioning is a relatively new partitioning

model. Like fixed partitioning, adaptive partitioning lets the
system designer reserve CPU cycles for a process or group of
processes to create a system whose parts are all protected
against resource starvation.

Data aggregator

Patient alarm

Diagnostic display

Data logger

Adaptive partition 1
Budget available

8

10

11

15

10
10

20

21
30

Drivers

Filesystem

Communications
stacks

12

7

8

6

21

Adaptive partition 2
Budget exhausted

Running (highest priority ready thread)

Blocked Ready

Figure 10: Adaptive partitioning is a set of rules that protect
specified threads and groups of threads, and is an excellent
solution for dynamic embedded systems.

Figure 9: Fixed partitioning guarantees that processes will get the
resources specified by the system designer, but lacks flexibility.

QNX Software Systems Choosing an RTOS for Remote-care Medical Devices

 9

Unlike static partitioning, adaptive partitioning uses a
dynamic scheduling algorithm; it dynamically reassigns CPU
cycles from partitions that are not using them to partitions
that can benefit from extra processing time. Partition
budgets are enforced only when the CPU is running to
capacity. Adaptive partitioning thus lets systems run at
100% of capacity. All available cycles are used if they are
needed, but when processes in more than one partition
compete for cycles, the partitioning enforces resource
budgets and prevents resource starvation. Designers can
count on resource guarantees, while not having to work
around what is, in effect, the reduced capacity of their
processers imposed by static partitioning.

Self-healing systems
A microkernel RTOS architecture offers excellent safeguards
against process failures cascading through the system.
Devices requiring high availability guarantees may also
implement hardware-oriented high-availability solutions, and
a software high availability manager.

This manager is a process that monitors the system and
performs multi-stage recoveries whenever system services or
process fail or no longer respond. A high availability manager
should:

• automatically restart failed processes — without a
system rebooting

• automatically recover inter-process communications
following process failures

• perform customized failure recovery actions, where
applications identify failure conditions and perform
specified activities to mitigate consequences and speed
recovery

• be self-monitoring and resilient to internal failures; if, for
whatever reason, the high availability manager is
stopped abnormally, it must immediately and
completely reconstruct its own state by handing over to
a mirror process

Multicore support
Not all remote-care medical devices are good candidates for
multicore processing; their computing requirements do not
justify the greater cost and complexity of multicore. That
said, multicore processing is becoming essential to meet the
processing demands of portable medical imaging systems.

 As more sophisticated imaging and measurement
technologies become available, more and more medical
devices of all kinds will need multicore processing just to
handle the data they receive. Remote-care devices, even
devices for use in the home by the patients themselves, are
no exception. The aging populations of industrialized
countries suggest a growth in the need for in-home and
personal devices that support sophisticated monitoring
activities coupled with simple interfaces and even voice-
promoting.

Thus, even if a manufacturer’s current devices do not
require multicore processing, future devices almost certainly
will. It would be wise to review, for each RTOS under

QNX Adaptive Partitioning

QNX adaptive partitioning can be overlaid on top of an
existing system without code redesign or modifications.

In the QNX Neutrino RTOS, a system designer can
simply launch existing POSIX-based applications in
partitions, and the RTOS scheduler ensures that each
partition receives its allocated budget. Inside each
partition, each task continues to be scheduled
according to the rules of priority-based preemptive
scheduling; there is no need to change application
scheduling behaviors.

As a final step, the designer can dynamically
reconfigure the partitions to fine-tune the system for
optimal performance.

QNX High Availability Framework

The QNX high availability framework enables developers
to construct custom failure-recovery scenarios, and
design systems to recover quickly and transparently. It
provides tools for building systems that isolate and even
repair faults before they domino through a system.

The QNX high availability framework includes a high
availability manager API library, which offers a simple,
thread-safe mechanism for communicating with the
high availability manager; and a client recovery library,
which provides a drop-in enhancement solution for
many standard libc I/O operations.

Choosing an RTOS for Remote-care Medical Devices QNX Software Systems

10

consideration, not only how well these RTOSs run on
multicore systems, but also what they do to support
migration from single-core to multicore. For instance, do
they implement processor affinity, so that applications
originally designed for single-core systems can be moved to
multicore without redesign? And, if so, how dependable is
this new implementation, and how much time and work will
be required to achieve certification? In short, an RTOS
should not only support multicore implementations, but it
should facilitate eventual migration from single-core to
multicore platforms, and reduce the risks associated with
this migration.

Connectivity
Support for networking protocols should be high on an RTOS
capabilities shopping list.

Connectivity is already a key capability of remote-care
medical devices, and its importance will only increase as
patients, healthcare professionals, hospitals, emergency
services, and insurers reap its benefits.

Connectivity for remote-care medical devices means the
ability to connect to and interact with other local devices,
both medical and non-medical, and it means connectivity to
the network, and through the network to everything from
secure data storage to emergency services.

For example, a blood pressure monitor could be connected
via Bluetooth to a voice-prompt medicine dispenser that
informs the monitor when the patient is instructed to take
medication. Both devices could be connected to the
patient’s electronic file at a centralized location, as well as a
nursing station if the patient is in a hospital or other care
facility.

Network connectivity — either directly or through a smart
phone — would give the patient complete freedom of
movement, while maintaining communications with all
essential components in the patient-care infrastructure:
family, physicians, hospital, and even emergency services.
The patient could work, play, shop, travel and even vacation
overseas confident that monitoring continues uninterrupted.

Depending on the type of device — more specifically, the
nature of data the device transmits and receives — it may be
useful or necessary to build connectivity to standards such
as IEC 61784, which defines how to use a 61158

“unreliable” medium (ethernet, for instance) for the reliable
transmission of safety-related information.

User Interface Design
Discussions of user interface design, the good, the bad, the
ugly, and the downright dangerous could fill a few miles of
shelf space, and is far beyond the scope of this short paper.
Even limited to a very specific implementation, such as a
blood pressure monitor for people with mild cognitive
impairment, the discussion might well merit a doctoral
dissertation. Suffice to say here that the RTOS for a portable
medical device should offer:

• support for whatever HMI design the device requires,
including the concurrent use of multiple technologies,
such as Open GL ES and Adobe Flash

• a system architecture that facilitates the re-use of the
same underlying system with a variety of user
interfaces, for instance, for devices with similar
functionality but requiring different interfaces, say
home and professional

Data Integrity and Security
The confidentiality of patients’ medical records is a primary
concern of physicians, hospitals and other healthcare
institutions, the patients themselves, insurers, and
governments. The stiff penalties for breaches of privacy and
security stipulated by the U.S. 2009 HITECH Act is just one
example of how seriously governments treat the question.
Similarly, Canadian provinces (which are responsible to
healthcare delivery in Canada) have strict Health Privacy
Acts; the U.K. has the Data Protection Act, and so on.

Confidentiality is not sufficient, however. Data must also be
accurate, and available when required. In short, data
integrity and security means that:

• nothing bad happens to the data — it is not corrupted,
erased or lost

• only authorized users (persons and systems) have
access to the data — default is no access, and
permission to read, write and copy must be explicitly
granted

QNX Software Systems Choosing an RTOS for Remote-care Medical Devices

 11

Data integrity and security depend on a host of factors; key
among these are kernel design, filesystem support, and
security encryption and authorization protocols.

Kernel design
Kernel design is critical to data integrity and security simply
because if the kernel is compromised, everything is
vulnerable. Thus, the more dependable the kernel, the
better the data.

 “RTOS Architectures” above presents the high-level
argument for an RTOS microkernel architecture. An
observation about microkernels made by Eugen Bacic in a
2006 paper is, nonetheless, worth quoting here:

Microkernel architecture makes for a more secure and
safe system since the actual security aware component
— the microkernel — is small and easily understood
with a focus on what has been historically defined as
security relevant.9

In other words, a microkernel architecture greatly improves
system security, because it isolates processes in protected
user space, and what remains in the kernel is relevant to
security, and is relatively small — small enough to be easily
understood and, hence, debugged, optimized and hardened.

Filesystem support
Filesystems come in a wide range of flavors, each more or
less appropriate for different systems and implementations.
A detailed discussion of filesystems is beyond the scope of
this paper. However, it is worth noting here that when
evaluating an RTOS’s filesystem support, it is important to
understand how the medical device or devices will use
filesystems, and, with this information in mind, to ask more
than if the RTOS supports this or that media (NAND, NOR
RAM), and this or that filesystem types (POSIX, Ext2, FAT,
NTFS, etc.). An evaluation of an RTOS’s filesystem support
should also include questions about:

• Performance—does the RTOS filesystem support
include garbage collection, file defragmentation, etc.,
and are bad sectors marked and bypassed?

9 Eugen Bacic, “Security as a Core Competency of the QNX

Neutrino Microkernel”. Cinnabar Networks (Bell Security
Solutions) and QNX Software Systems, 2006.

• Error recovery — what protocols does the RTOS follow
to recover from a fault, such as an unexpected power
loss?

• Restarts — can the filesystem be restarted or even
upgraded without stopping the system?

• Accessibility — can the filesystem be accessed
through standard POSIX / C API calls, such as open(),
read(), write(), close(), etc.?

Encryption and authorization
To ensure data security, and hence confidentiality, a system
must support encryption and authorization protocols for the
required levels of security. Treatises on the subject could fill
a library — with a good number of shelf-miles most probably

QNX Safe Kernel

The QNX Neutrino RTOS Safe Kernel has been certified
by Sira to conform to IEC 61508 at Safety Integrity
Level 3 (SIL 3).

It incorporates all characteristics required of an IEC
61508 safe kernel:

• Design safe state — a well-defined state to which
the kernel reverts when it encounters a situation it
cannot handle

• Isolation — between application processes, and
between applications processes and the kernel
itself

• Scheduling predictability — guaranteed processor
resources according to thread priorities, assurance
against "lazy" resource allocations, and scheduling
analysis through techniques such as deadline and
rate monotonic scheduling

QNX Secure Kernel

The QNX Neutrino RTOS Secure Kernel is certified to
meet the stringent requirements of the Common Criteria
ISO/IEC 15408 Evaluation Assurance Level (EAL) 4+.

The Target of Evaluation (TOE) includes not only the
mature QNX Neutrino OS kernel, but also its multi-core
(symmetric and bound multiprocessing) and secure
partitioning technology.

Choosing an RTOS for Remote-care Medical Devices QNX Software Systems

12

classified — and there is little that needs to be added here.
Briefly, whatever the level of data security a medical device
or line of devices will implement, the RTOS will have to
support protocols such as IPSec (Internet Protocol Security) ,
WPA/WPA2 (WiFi Protected Access), IEEE 802.1X
(Extensible Authentication Protocol over IEEE 802), and
RADIUS (Remote Authentication Dial In User Service), and
local data encryption to DES (Data Encryption Standard)
requirements.

Compliance
Ensuring that their products comply with standards and
legislation in the jurisdictions where they will be marketed
and operated is a critical part of any medical device
manufacturer’s product plan. Compliance is a necessary
condition for getting a device to market, a sine qua non
condition that must be met before investments can be
transformed into revenue.

Like other businesses, medical device manufacturers are
caught in a perpetual race against time to beat the
competition to market. Timing is not as calendar-driven as
for consumer electronics. A new blood analysis unit does not
have to make the Christmas shopping season, for instance;
but timing is still critical. The longer a device takes to
develop, the more the development is likely to cost, and, the
greater the window for the competition to secure a market
share. This is particularly true for new technologies and
existing technologies entering new markets. Often, the first
one in sets the standard; all others are forced to play
catch-up. One need only to be reminded that acetylsalicylic
acid (ASA) is commonly known as Aspirin, the name
Friedrich Bayer gave the drug when he began marketing it in
1899.

Anything that speeds a device through the certification
process (or processes, as there are as many certifications as
there are jurisdictions) not only saves time and money, but
also increases the likelihood that that device will secure a
significant share of its market.

The use of device components, such as the RTOS kernel,
that have already received safety certification, such as the
IEC 61508 Safety Integrity Level 3 (SIL 3), should come
complete with all the relevant documents, including
documentation of the development and verification

processes. An IEC 61508 SIL 3 certified kernel reduces the
number of unknowns, and hence may help reduce the time
and effort required to certify a medical device to, for
example, IEC 62304. Similarly, working with a supplier who
has a history of successful certifications can reduce the
uncertainties and speed product certifications10.

Tools
In the its Embedded System Engineering Survey Data report
for 2010, VDC Research notes that 55.3% of respondents in
the medical embedded systems sector reported that their
projects were behind schedule, with almost 40% more than
three months behind11. The reasons cited for these delays
are many and various, ranging from project complexity to
poor management.

Whatever the reason or reasons a project falls behind, tools
should never be to blame. Especially with the increasing
demand for multicore processing in embedded systems, it is
essential to look closely at the tools available for developing,
debugging, testing and implementing systems running on
the preferred OS. If these tools are inadequate or difficult to
use, it may be worth reconsidering the choice. After all, no
matter how well a system runs once it is implemented, the
longer it takes to complete and implement, the more it will
cost, and the less successful will be the project.

Tools and compliance
A further benefit of a using a good tool set is that it can help
provide concrete evidence of functionality and behaviors in a
given system. If a tool set can, for example, offer code
coverage, system profiling and memory analysis12, the
artifacts it delivers can be included as evidence when
building the case for regulatory compliance.

10 See Chris Hobbs, “Using an IEC 61508-Certified Kernel for Safety-

Critical Systems.” QNX Software Systems, 2010.
11 Steve Balacco, et al. 2010 Survey Year, Track 2: Embedded

System Engineering Survey Data, Vol. 3: Vertical Markets. VDC
Research. 2010. p. 27.

12 See, for example, Elena Laskavaia, et al., “Memory Errors in
Embedded Systems: Analysis, Prevention, and Risk Reduction”.
QNX Software Systems, 2010.

QNX Software Systems Choosing an RTOS for Remote-care Medical Devices

 13

Conclusion
Aging populations and tightening health budgets in
industrialized countries are driving a shift in healthcare
delivery strategies from hospitals to remote-care and home
care. These changes and new technologies are driving the
markets for remote-care medical devices, which are growing
at a pace few anticipated only a decade ago.

Medical devices must meet stringent requirements for
dependability, and they must pass the most exacting
compliance standards in order to be certified. Device

manufacturers can reduce their costs (in time and money)
and greatly improve their products’ chances of success by
paying careful attention to the characteristics of the
operation system they select. Devices that cannot be allowed
to fail and reboot require a microkernel RTOS with viable
strategies for availability, resource allocation, connectivity,
data integrity and security, and, in some cases, eventual
migration to multicore systems. An RTOS supplier with a
track record of successful product safety and security
certifications will help reduce the costs of obtaining FDA,
MDD and other certifications.

References
Bacic, Eugen. “Security as a Core Competency of the QNX
Neutrino Microkernel”. Cinnabar Networks (Bell Security
Solutions) and QNX Software Systems. 2006. www.qnx.com

Balacco, Steve, et al. 2010 Survey Year, Track 2: Embedded
System Engineering Survey Data, Vol. 3: Vertical Markets.
Natick: Massachusetts: VDC Research. 2010.

Canadian Medical Association. “Canada's Physicians lead
the way in charting a new course for healthcare” (press
release). 3 Aug. 2010.
www.newswire.ca/en/releases/archive/August2010/03/
c7852.html

Hicks, Robin. “How will technology change the future of
healthcare?” FutureGov. 1 Sept. 2009.
www.futuregov.asia/articles/2009/sep/01/how-will-
technology-change-future-healthcare/

Hobbs, Chris. “Using an IEC 61508-Certified Kernel for
Safety-Critical Systems.” QNX Software Systems. 2010.
www.qnx.com

Kharif, Olga. “Qualcomm, AT&T Move in on 'M-Health'”.
Bloomberg Businessweek. 23 Aug. 2010.
http://www.businessweek.com/technology/content/aug2010
/tc20100823_511801.htm

Laskavaia, Elena, et al. “Memory Errors in Embedded
Systems: Analysis, Prevention, and Risk Reduction”. QNX
Software Systems. 2010. www.qnx.com

Leroux, Paul. “Exactly When Do You Need an RTOS?” QNX
Software Systems. 2009. www.qnx.com

——. “Using Resource Partitioning to Build Secure,
Survivable Embedded Systems”. QNX Software Systems.
2009. www.qnx.com

Nagarajan, Shiv, et al. “Processor Affinity or Bound
Multiprocessing? Easing the Migration to Embedded
Multicore Processing”. QNX Software Systems. 2009.
www.qnx.com

Rosser, Walter W., et al. “Patient-Centered Medical Homes
in Ontario. New England Journal of Medicine. 362:e7.
January 2010.
www.nejm.org/doi/full/10.1056/NEJMp0911519

United Nations Population Division. World Population
Prospects: The 2008 Revision Population Database. 2008.
http://esa.un.org/unpp/

World Health Organization. The world health report 2008:
primary healthcare now more than ever. Geneva: 2008.

QNX Software Systems Choosing an RTOS for Remote-care Medical Devices

About QNX Software Systems
QNX Software Systems is the leading global provider of innovative embedded technologies, including middleware, development

tools, and operating systems. The component-based architectures of the QNX® Neutrino® RTOS, QNX Momentics® Tool Suite, and

QNX Aviage® middleware family together provide the industry’s most reliable and scalable framework for building high-

performance embedded systems. Global leaders such as Cisco, Daimler, General Electric, Lockheed Martin, and Siemens depend

on QNX technology for vehicle telematics and infotainment systems, industrial robotics, network routers, medical instruments,

security and defense systems, and other mission- or life-critical applications. The company is headquartered in Ottawa, Canada,

and distributes products in over 100 countries worldwide.

www.qnx.com
© 2011 QNX Software Systems GmbH & Co. KG, a subsidiary of Research In Motion Ltd. All rights reserved. QNX, Momentics, Neutrino, Aviage,

Photon and Photon microGUI are trademarks of QNX Software Systems GmbH & Co. KG, which are registered trademarks and/or used in certain

jurisdictions, and are used under license by QNX Software Systems Co. All other trademarks belong to their respective owners. 302204 MC411.91

