

QNX Software Systems 1

In-Field Debugging: Diagnosing
Software Problems While Maintaining
System Availability

Paul Leroux, Technology Analyst, QNX Software Systems
paull@qnx.com

Abstract
Software bugs that make it to market not only cause incorrect system behavior
and low system availability, but also result in unhappy (and fewer) customers.
Unfortunately, conventional debugging methods can themselves interfere with
the availability, performance, and correct behavior of the affected system.
Consequently, this paper examines debug and information-gathering
techniques that can maintain system availability while generating artifacts that
help diagnose and resolve software failure.

Introduction
A modern embedded system may employ hundreds of software tasks, all of
them sharing system resources and interacting in complex ways. This
complexity can undermine reliability, for the simple reason that the more code a
system contains, the greater the probability that coding errors will make their
way into the field. (By some estimates, a million lines of code will ship with at
least 1000 bugs, even if the code is methodically developed and tested.)
Coding errors can also compromise security, since they often serve as entry
points for malicious hackers.

No amount of testing can fully eliminate these bugs and security holes, as no
test suite can anticipate every scenario that a complex software system may
encounter. Consequently, system designers and software developers must
adopt a “mission-critical mindset” and employ software architectures that can
contain software errors and recover from them quickly. Just as important,
developers must employ tools and debugging techniques that help maintain
system integrity during the problem-solving process.

The tools can’t introduce changes that adversely or unpredictably affect system
behavior, particularly if the system is actively provid-ing service to users. And
once the developer has fixed any software component, the tools and underlying
operating system should make it easy to upload and monitor the fixed version,
again without affecting overall system behavior and availability.

Gaining visibility through system tracing
When a complex software system performs slowly or incorrectly, the sheer
number of system interactions can make pinpointing the cause a frustrating, if
not monumental, task. For instance, if dozens or hundreds of threads are

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 2

running and interacting in a multi-processor or multi-core system, and one
thread blocks unexpectedly, which event or interaction led to the problem?
Without tools that provide a system-wide view, the cause may appear to be
located in one part of the system when, in fact, it is located somewhere else.

To complicate matters, conventional tools are typically invasive, changing the
behavior of the system being diagnosed. For instance, by halting only the
program being debugged and not the whole system, a source debugger can
change the order in which the system’s operations occur. This phenomenon—
often called the probe effect—can temporarily mask race conditions and
introduce “errors” that occur only when debugging is performed.

Of course, conventional tools for source debugging and application profiling are
still important in today’s complex, multiprocessor, multilanguage systems. But
they’re only useful once the developer has determined which component, or set
of components, to fix. To do that, the devel-oper must first understand how the
system behaves as a whole. For instance, in a multi-core system, the developer
must be able to determine which cores are exchanging messages, and in what
order. The developer must also identify which processes or threads are
involved in each inter-core transaction and trace the execution path from one
core to another.

A key way to gain visibility into system behavior is through system tracing.
System tracing can refer to a range of tools and techniques, including:

 printf() calls that annotate a program's progress

 system information tools (for instance, the Unix top command) that monitor
task creation and track resource usage

 compiler-driven instrumentation techniques that enable application profiling
and code coverage

 memory tracing tools that analyze a program’s history of memory usage
and that diagnose problems such as memory leaks and excessive memory
fragmentation

 kernel-level instrumentation techniques that reveal events at an operating-
system level, providing accurate timing traces and displaying complex
interactions among multiple processes and threads

In most cases, system tracing tools can present system activity as a linear
sequence of events, allowing the developer to quickly determine which events
caused what outcome to occur. Depending on the style of tracing used, the
developer can extract additional timing or task-interrupt information and then
incorporate that information into the analysis of the system’s performance or
as part of the debugging process.

Problem Technique

IPC bottleneck Watch the flow of messages from one thread to another.

Resource contention Watch threads as they change states.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 3

Problem Technique

Slow overall performance View CPU usage to identify the processes or threads
that consume the most CPU cycles.

Large interrupt latency
Search for user events to identify which thread is causing
the delay, then insert custom events into that thread to
pinpoint the problem.

Excessive thread
migration in a multicore
system

Watch threads as they migrate from one CPU to another.

Table 1. Some common problems and describes how a developer can use a system

profiler to diagnose them.

Consider, for example, the system profiler, a visualization tool that forms part of
the QNX® Momentics® IDE. Like a debugger that can trace the flow of control
from one thread to another within a single program, this tool allows the develop
to “see” how the various components in a system interact, whether they all run
on a single processor or across multiple processor cores. If something goes
wrong, the tool can help pinpoint when the event occurred, which software
components were involved, what those components were doing, and,
importantly, how to interpret the event.

Gaining insight while maintaining availability
A good system profiler is noninvasive; it can provide insight without requiring
code modifications and has minimal impact on system behavior. Properly
implemented, it will allow the developer to diagnose a live system without
interrupting or unduly degrading the services provided by that system.

To ensure this “noninvasiveness,” a system profiler typically uses fast, selective
logging of system events, including messages, kernel calls, thread-state
changes, and interrupts. User-written code doesn’t have to be modified, since
this event logging can be performed by an instrumented kernel.

Take, for example, the instrumented kernel for the QNX Neutrino® RTOS,
which is simply the standard QNX Neutrino microkernel with the addition of a
small, event-gathering module. When triggered, this module intercepts
information about what the kernel is doing, generating time- and CPU-stamped
events that are copied to a set of buffers grouped in a circular linked list. Once
the number of events inside a buffer reaches a high-water mark, a logging utility
either writes the data to a storage location (for instance, battery-backed SRAM)
on the target or streams the data directly to the development host—the latter
approach eliminates the need for extra storage on the target.

Properly designed, an instrumented kernel can run at virtually same speed as a
standard, non-instrumented microkernel. Performance is affected only when
events are being collected. But, even then, the kernel can provide a variety of
mechanisms to ensure minimal intrusion. For instance, the kernel could allow
the developer to trigger event logging only when certain conditions occur. It
could also provide user-definable filters so that the logging process only
collects events of interest—developers can log as many or as few events as
they need.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 4

Of course, it's always possible that the overhead of event logging, no matter

how small, will have a miniscule effect on system timing. To help the developer
determine whether this problem is occurring, the instrumented kernel should be
able to log all event types, including those generated by any event-logging
operation. The instrumented kernel should also be fully preemptible; that way,
high-priority tasks with hard deadlines can preempt event-logging operations.

Even when runtime event-filtering is applied, the events log from an
instrumented kernel may contain data for many thousands of individual events.
Thus, the system profiler should let the developer apply additional filters during
analysis. That way, the developer can reduce the volume of data, making it
easier to “zoom in” on events of interest.

Injecting user-defined events
It’s often useful to determine the timing of specific events in an application.
Thus, the instrumented kernel should also allow the developer to insert user-
defined trace events into the system. For instance, to trace the time a packet
takes to be processed, the developer could create an event when the packet
arrives in the system and when the packet leaves the system.

Figure 1. A system profiler can collect and analyze data for kernel calls, hardware interrupts,

thread-state changes, interprocess communications, and other system-level events, allowing

the developer to pinpoint deadlocks, logic flaws, and other performance-degrading conditions.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 5

Sometimes, the data provided by an instrumented kernel can be so detailed
that it becomes difficult to understand what, exactly, the code in question is
doing. User-defined events can help address the problem. By placing user-
defined events throughout application code or an interrupt handler, the
developer can construct an event sequence that shows which actions the
program is reacting to and which sections of code were involved.

Isolating memory access violations
If designed correctly, an RTOS can simplify the task of isolating and resolving a
variety of errors in a live system, including memory access violations. For
instance, in a microkernel RTOS, only a small core of fundamental objects (for
instance, signals, timers, scheduling) are implemented in the kernel itself. All
other components—device drivers, file systems, protocol stacks, user
applications—run outside the kernel as separate, memory-protected processes.
See Figure 2.

This approach
offers fine-grained
fault isolation,
preventing any
component from
corrupting any
other component.
It also helps
isolate a memory
or logic error
down to the
component that
caused it. For
instance, if a
driver tries to
access memory outside its process container, the OS can immediately
terminate the driver and reclaim the resources that the driver was using; the OS
can also indicate the location of the errant instruction or position a symbolic
debugger directly at that line of source code. Meanwhile, the rest of the system
can continue to run, allowing the developer to diagnose the problem and to
focus on resolving it.

By providing fine-grained fault isolation, a microkernel offers much faster Mean
Time to Repair (MTTR) than conventional OS architectures. For instance, when
a driver faults, the OS can quickly terminate and restart the driver, often within
a few milliseconds. This is orders of magnitude faster than the conventional
solution, which is to reboot the entire system.

Using software watchdogs to maintain high availability
Many embedded systems employ a hardware watchdog timer to detect if the
software or hardware has gone “insane.” Typically, some component of the
system software checks for system integrity and then strobes the timer
hardware to indicate that the system is functioning normally. If the timer isn't

Figure 2. In a microkernel OS, virtually any component can fail and be

restarted, without damaging the kernel or rebooting the entire system.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 6

strobed regularly, it expires and forces a processor reset. The good news is
that the system recovers from the software or hardware lockup; the bad news is
that the system must completely restart, which, for some systems, can result in
significant down-time and loss of state information.

Now let's look at what happens in a memory-protected system. If an intermittent
software error occurs, the OS can catch the event and pass control to a user-
space process called a software watchdog. This process can then make an
intelligent decision about how best to recover from the failure. Rather than force
a full reset—which is what a hardware watchdog would do—the software
watchdog could:

 abort the process that failed due to a memory-access violation, then simply
restart that process without shutting down the rest of the system

OR

 terminate the failed process and any related processes, initialize the
hardware to a “safe” state, and then restart the terminated processes in a
coordinated manner

OR

 if the failure is very critical, perform a controlled shutdown of the entire
system and sound an alarm to system operators

Unlike its hardware counterpart, the software watchdog allows the developer to
retain intelligent, programmed control of the embedded system, even though
several processes within the control software may have failed for various
reasons. A hardware watchdog timer can still help a system recover from
hardware latch-ups, but for software failures the software watchdog offers much
better control.

Better still, a software watchdog can monitor for system events that are invisible
to a conventional hardware watchdog. For example, a hardware watchdog
can ensure that a driver is servicing the hardware, but may have a hard time
detecting whether other programs are talking to that driver correctly. A
software watchdog can cover this hole and take action before the driver itself
shows any problems.

Create core dump files for offline analysis
While performing a partial restart, the software watchdog can also collect
information about the nature of the software failure. For example, if the system
contains, or has access to, mass storage (flash memory, hard drive, a network
link to another computer with storage), the soft-ware watchdog can invoke a
dumper utility that generates a chronological archive of core dump files.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 7

A dump file provides the information needed to identify the source line that
caused a process failure, along with a history of function calls, contents of data
items, and other diagnostic information. The developer can debug the dump file
as if it were a live application on the target system, stepping through call stacks
to determine which events led to the problem.

In some cases, the rogue process may have to be restarted as soon as
possible. If so, the developer may need to restart the process and then
complete the core dump. Some software-watchdog implementations, such as
the QNX critical process manager, provide this level of control, allowing the
developer to change the order of operations, grab kernel traces, and add
decision-making capabilities.

Using a variation of the dumper utility (the service responsible for grabbing core
information from a dying process), the developer can create a dump file for a
particular process even if the processes hasn’t yet attempted a memory
violation. This utility simply sets a “hold” on the process, duplicates the code
and data of the process into buffers, and then unholds the process. The utility
then writes the buffers to a dump file. The benefit of all this? If a live sys-tem
seems to be running strangely, the developer can take a snapshot for later
analysis—without first forcing a shutdown or experiencing any down time.

Uploading the fix
By performing postmortem analysis of core dump files, the developer can
debug and fix a problem offline, without having to remove the field-deployed

Figure 3. Performing postmortem debugging on a core dump file.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 8

system from service. However, once the problem has been corrected, there is
still the challenge of updating the target system with the new code.

When it comes to upgrading application-level code, most modern operating
systems have little problem. In fact, some operating systems even allow new
system services, such as drivers and protocols, to be dynamically attached to
the kernel. However, because these services then run in kernel space, it’s
difficult to stop, remove, and replace them with new versions. Upgrading them
becomes difficult, if not impossible, unless the system is taken down and
rebooted.

To address these
problems, an OS
should, at a minimum,
allow device drivers
and other system
services to be
dynamically unloaded.
But even then, there
are many cases in
which a driver may
have to be upgraded
without interrupting the
service that the driver
itself provides.

As a result, the OS
should allow a new
version of the driver to
start while the old
version is still running,
and then allow the new
version to gracefully
take over the existing driver’s duties. Once the transition is complete, the OS
could terminate the old driver and recover whatever resources it was using.

Using time-partitioning to diagnose problems

Time partitioning provides a way to debug systems while ensuring that critical
processes have the CPU cycles they need to run in a correct and timely
fashion. Using this technique, developers place programs into virtual

Figure 4. A software watchdog can restart problem

components automatically, without downtime or operator

intervention. The watchdog can also generate a process

dump file for postmortem debugging, allowing developers

to engineer a fix that can be uploaded to the field.

Figure 5. With time partitioning, the system designer can reserve a

guaranteed amount of CPU time for each software subsystem, including

debug tools.

Fixed driver
replaces

old driver while
system runs.

Watchdog
restarts driver &

creates dump file.

Fixed driver
is uploaded to

the field.

Dump file
is debugged

offline.

Dump
file

Driver attempts
invalid memory

access.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 9

compartments, called partitions, and allocate a guaranteed amount of CPU time
to each partition. These resource guarantees can:

 contain denial-of-service (DoS) attacks

 prevent poorly written or malicious processes from monopolizing resources
needed by other processes

 ensure that lower-priority functions always have the CPU cycles they
require

 allow the system to dynamically support new applications and services
while ensuring that existing services still have sufficient computing
resources

Just as important, partitioning allows a developer to debug a system without
starving critical processes of CPU time. For instance, the system designer
could reserve 10% of CPU time for the debugger and any associated
communications processes; see Figure 5. Because every other subsystem is
also guaranteed a portion of CPU time, the cycles consumed by debug-ging
operations won’t affect the performance or availability of the system’s core
functions.

Time partitioning can simplify day-to-day testing and debugging, before the
system is deployed in the field. For example, in the unit testing phase, code
defects can cause runaway conditions that bring debugging to a halt. In these
situations, the system appears to be locked and the developer can recover only
through a reset—thereby losing useful diagnostic information. To prevent this
scenario from occurring, the developer can create a partition that guarantees
CPU time for console login and remote debugging. These guarantees allow the
developer to continue debugging and to collect the information needed to
diagnose the problem.

Allocating unused debug cycles to other processes

Not all partitioning schedulers are created equal. Some implementations strictly
enforce CPU budgets at all times, so that each partition will consume its full
budget even when it has no work to do. Other implementations take a more
flexible approach and dynamically allocate unused CPU cycles to partitions
that could benefit from the extra processing time; this approach maximizes
overall CPU utilization and allows the system to handle peak demands. For
instance, in QNX Neutrino adaptive partitioning, the debug partition consumes
its budgeted CPU cycles only when the debugger needs them. If the debugger is
idle, the scheduler will allocate the idle cycles to other partitions.

Developers can easily drop adaptive partitioning into an existing software
design. It is based on the industry-standard POSIX programming model, so
developers don’t have to rewrite code or learn special programming
techniques. Within a partition, threads are scheduled according to the
traditional rules of a preemptive, priority-based scheduler. Scheduling policies
such as FIFO, round robin, and sporadic all operate within a partition. In effect,
each partition becomes a separate virtual processor.

In-Field Debugging: Diagnosing Software Problems While Maintaining System Availability

QNX Software Systems 10

Partitioning for faster error notification and recovery
Many embedded systems cannot tolerate downtime and must remain
continuously available to users. Here is the formal definition of availability:

MTBF represents the mean time between failures and MTTR the mean time to
repair or resolve a particular problem. Simply put, you can increase availability
both by reducing the frequency of failures and by reducing the time needed to
recover from those failures.

When a hardware or software subsystem fails in a high availability embedded
system, soft-ware watchdogs and other automated recovery functions must
return the system to a proper operating state. The faster such recovery
functions execute, the lower the mean time to repair (MTTR) and the greater
the overall system availability. Time partitioning can help by ensuring that these
functions have the CPU time they require.

In systems that typically run at very high CPU utilization, processes that monitor
system health and report errors don’t get an opportunity to run in a timely
manner. The CPU guarantees provided by time partitioning address this problem
and ensure that routine diagnostic functions run as intended. These functions can
thus detect and report problems before the problems result in hard failures.

In the most severe cases, the operator must intervene to revive a system. To
ensure the intervention is timely and effective, the system must quickly notify
the operator of the failure and provide some way of diagnosing the problem.
Again, partitioning helps by ensuring the system has enough CPU cycles to
alert the operator and to provide guaranteed access to the user interface, be it
a system console, remote terminal, or other method.

About QNX Software Systems
QNX Software Systems Limited, a subsidiary of BlackBerry, is a leading vendor of
operating systems, development tools, and professional services for connected
embedded systems. Global leaders such as Audi, Cisco, General Electric, Lockheed
Martin, and Siemens depend on QNX technology for vehicle infotainment units, network
routers, medical devices, industrial automation systems, security and defense systems,
and other mission- or life-critical applications. Founded in 1980, QNX Software Systems
Limited is headquartered in Ottawa, Canada; its products are distributed in more than
100 countries worldwide. Visit www.qnx.com and facebook.com/QNXSoftwareSystems,
and follow @QNX_News on Twitter. For more information on the company's automotive
work, visit qnxauto.blogspot.com and follow @QNX_Auto.

www.qnx.com

© 2013 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, Aviage
are trademarks of QNX Software Systems Limited, which are registered trademarks
and/or used in certain jurisdictions. All other trademarks belong to their respective
owners.
302251 MC411.133

http://www.qnx.com/
https://www.facebook.com/QNXSoftwareSystems
http://twitter.com/QNX_News
http://qnxauto.blogspot.com/
http://twitter.com/QNX_Auto

