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Abstract 
Software bugs that make it to market not only cause incorrect system behavior 
and low system availability, but also result in unhappy (and fewer) customers. 
Unfortunately, conventional debugging methods can themselves interfere with 
the availability, performance, and correct behavior of the affected system. 
Consequently, this paper examines debug and information-gathering 
techniques that can maintain system availability while generating artifacts that 
help diagnose and resolve software failure. 

Introduction 
A modern embedded system may employ hundreds of software tasks, all of 
them sharing system resources and interacting in complex ways. This 
complexity can undermine reliability, for the simple reason that the more code a 
system contains, the greater the probability that coding errors will make their 
way into the field. (By some estimates, a million lines of code will ship with at 
least 1000 bugs, even if the code is methodically developed and tested.) 
Coding errors can also compromise security, since they often serve as entry 
points for malicious hackers. 

No amount of testing can fully eliminate these bugs and security holes, as no 
test suite can anticipate every scenario that a complex software system may 
encounter. Consequently, system designers and software developers must 
adopt a “mission-critical mindset” and employ software architectures that can 
contain software errors and recover from them quickly. Just as important, 
developers must employ tools and debugging techniques that help maintain 
system integrity during the problem-solving process. 

The tools can’t introduce changes that adversely or unpredictably affect system 
behavior, particularly if the system is actively provid-ing service to users. And 
once the developer has fixed any software component, the tools and underlying 
operating system should make it easy to upload and monitor the fixed version, 
again without affecting overall system behavior and availability.  

Gaining visibility through system tracing 
When a complex software system performs slowly or incorrectly, the sheer 
number of system interactions can make pinpointing the cause a frustrating, if 
not monumental, task. For instance, if dozens or hundreds of threads are 
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running and interacting in a multi-processor or multi-core system, and one 
thread blocks unexpectedly, which event or interaction led to the problem? 
Without tools that provide a system-wide view, the cause may appear to be 
located in one part of the system when, in fact, it is located somewhere else. 

To complicate matters, conventional tools are typically invasive, changing the 
behavior of the system being diagnosed. For instance, by halting only the 
program being debugged and not the whole system, a source debugger can 
change the order in which the system’s operations occur. This phenomenon—
often called the probe effect—can temporarily mask race conditions and 
introduce “errors” that occur only when debugging is performed. 

Of course, conventional tools for source debugging and application profiling are 
still important in today’s complex, multiprocessor, multilanguage systems. But 
they’re only useful once the developer has determined which component, or set 
of components, to fix. To do that, the devel-oper must first understand how the 
system behaves as a whole. For instance, in a multi-core system, the developer 
must be able to determine which cores are exchanging messages, and in what 
order. The developer must also identify which processes or threads are 
involved in each inter-core transaction and trace the execution path from one 
core to another. 

A key way to gain visibility into system behavior is through system tracing. 
System tracing can refer to a range of tools and techniques, including: 

 printf() calls that annotate a program's progress 

 system information tools (for instance, the Unix top command) that monitor 
task creation and track resource usage 

 compiler-driven instrumentation techniques that enable application profiling 
and code coverage 

 memory tracing tools that analyze a program’s history of memory usage 
and that diagnose problems such as memory leaks and excessive memory 
fragmentation 

 kernel-level instrumentation techniques that reveal events at an operating-
system level, providing accurate timing traces and displaying complex 
interactions among multiple processes and threads 

In most cases, system tracing tools can present system activity as a linear 
sequence of events, allowing the developer to quickly determine which events 
caused what outcome to occur. Depending on the style of tracing used, the 
developer can extract additional timing or task-interrupt information and then 
incorporate that information into the analysis of the system’s performance or 
as part of the debugging process.  

 

Problem Technique 

IPC bottleneck Watch the flow of messages from one thread to another. 

Resource contention Watch threads as they change states. 
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Problem Technique 

Slow overall performance View CPU usage to identify the processes or threads 
that consume the most CPU cycles. 

Large interrupt latency 
Search for user events to identify which thread is causing 
the delay, then insert custom events into that thread to 
pinpoint the problem. 

Excessive thread 
migration in a multicore 
system 

Watch threads as they migrate from one CPU to another. 

Table 1. Some common problems and describes how a developer can use a system 

profiler to diagnose them. 

Consider, for example, the system profiler, a visualization tool that forms part of 
the QNX® Momentics® IDE. Like a debugger that can trace the flow of control 
from one thread to another within a single program, this tool allows the develop 
to “see” how the various components in a system interact, whether they all run 
on a single processor or across multiple processor cores. If something goes 
wrong, the tool can help pinpoint when the event occurred, which software 
components were involved, what those components were doing, and, 
importantly, how to interpret the event. 

Gaining insight while maintaining availability 
A good system profiler is noninvasive; it can provide insight without requiring 
code modifications and has minimal impact on system behavior. Properly 
implemented, it will allow the developer to diagnose a live system without 
interrupting or unduly degrading the services provided by that system. 

To ensure this “noninvasiveness,” a system profiler typically uses fast, selective 
logging of system events, including messages, kernel calls, thread-state 
changes, and interrupts. User-written code doesn’t have to be modified, since 
this event logging can be performed by an instrumented kernel. 

Take, for example, the instrumented kernel for the QNX Neutrino® RTOS, 
which is simply the standard QNX Neutrino microkernel with the addition of a 
small, event-gathering module. When triggered, this module intercepts 
information about what the kernel is doing, generating time- and CPU-stamped 
events that are copied to a set of buffers grouped in a circular linked list. Once 
the number of events inside a buffer reaches a high-water mark, a logging utility 
either writes the data to a storage location (for instance, battery-backed SRAM) 
on the target or streams the data directly to the development host—the latter 
approach eliminates the need for extra storage on the target. 

Properly designed, an instrumented kernel can run at virtually same speed as a 
standard, non-instrumented microkernel. Performance is affected only when 
events are being collected. But, even then, the kernel can provide a variety of 
mechanisms to ensure minimal intrusion. For instance, the kernel could allow 
the developer to trigger event logging only when certain conditions occur. It 
could also provide user-definable filters so that the logging process only 
collects events of interest—developers can log as many or as few events as 
they need. 
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Of course, it's always possible that the overhead of event logging, no matter 

how small, will have a miniscule effect on system timing. To help the developer 
determine whether this problem is occurring, the instrumented kernel should be 
able to log all event types, including those generated by any event-logging 
operation. The instrumented kernel should also be fully preemptible; that way, 
high-priority tasks with hard deadlines can preempt event-logging operations. 

Even when runtime event-filtering is applied, the events log from an 
instrumented kernel may contain data for many thousands of individual events. 
Thus, the system profiler should let the developer apply additional filters during 
analysis. That way, the developer can reduce the volume of data, making it 
easier to “zoom in” on events of interest. 

Injecting user-defined events 
It’s often useful to determine the timing of specific events in an application. 
Thus, the instrumented kernel should also allow the developer to insert user-
defined trace events into the system. For instance, to trace the time a packet 
takes to be processed, the developer could create an event when the packet 
arrives in the system and when the packet leaves the system. 

 
Figure 1. A system profiler can collect and analyze data for kernel calls, hardware interrupts, 

thread-state changes, interprocess communications, and other system-level events, allowing 

the developer to pinpoint deadlocks, logic flaws, and other performance-degrading conditions. 
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Sometimes, the data provided by an instrumented kernel can be so detailed 
that it becomes difficult to understand what, exactly, the code in question is 
doing. User-defined events can help address the problem. By placing user-
defined events throughout application code or an interrupt handler, the 
developer can construct an event sequence that shows which actions the 
program is reacting to and which sections of code were involved. 

Isolating memory access violations 
If designed correctly, an RTOS can simplify the task of isolating and resolving a 
variety of errors in a live system, including memory access violations. For 
instance, in a microkernel RTOS, only a small core of fundamental objects (for 
instance, signals, timers, scheduling) are implemented in the kernel itself. All 
other components—device drivers, file systems, protocol stacks, user 
applications—run outside the kernel as separate, memory-protected processes. 
See Figure 2. 

 

This approach 
offers fine-grained 
fault isolation, 
preventing any 
component from 
corrupting any 
other component. 
It also helps 
isolate a memory 
or logic error 
down to the 
component that 
caused it. For 
instance, if a 
driver tries to 
access memory outside its process container, the OS can immediately 
terminate the driver and reclaim the resources that the driver was using; the OS 
can also indicate the location of the errant instruction or position a symbolic 
debugger directly at that line of source code. Meanwhile, the rest of the system 
can continue to run, allowing the developer to diagnose the problem and to 
focus on resolving it. 

By providing fine-grained fault isolation, a microkernel offers much faster Mean 
Time to Repair (MTTR) than conventional OS architectures. For instance, when 
a driver faults, the OS can quickly terminate and restart the driver, often within 
a few milliseconds. This is orders of magnitude faster than the conventional 
solution, which is to reboot the entire system. 

Using software watchdogs to maintain high availability 
Many embedded systems employ a hardware watchdog timer to detect if the 
software or hardware has gone “insane.” Typically, some component of the 
system software checks for system integrity and then strobes the timer 
hardware to indicate that the system is functioning normally. If the timer isn't 

 

Figure 2. In a microkernel OS, virtually any component can fail and be 

restarted, without damaging the kernel or rebooting the entire system. 
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strobed regularly, it expires and forces a processor reset. The good news is 
that the system recovers from the software or hardware lockup; the bad news is 
that the system must completely restart, which, for some systems, can result in 
significant down-time and loss of state information. 

Now let's look at what happens in a memory-protected system. If an intermittent 
software error occurs, the OS can catch the event and pass control to a user-
space process called a software watchdog. This process can then make an 
intelligent decision about how best to recover from the failure. Rather than force 
a full reset—which is what a hardware watchdog would do—the software 
watchdog could:  

 abort the process that failed due to a memory-access violation, then simply 
restart that process without shutting down the rest of the system 

OR 

 terminate the failed process and any related processes, initialize the 
hardware to a “safe” state, and then restart the terminated processes in a 
coordinated manner  

OR 

 if the failure is very critical, perform a controlled shutdown of the entire 
system and sound an alarm to system operators 

Unlike its hardware counterpart, the software watchdog allows the developer to 
retain intelligent, programmed control of the embedded system, even though 
several processes within the control software may have failed for various 
reasons. A hardware watchdog timer can still help a system recover from 
hardware latch-ups, but for software failures the software watchdog offers much 
better control.  

Better still, a software watchdog can monitor for system events that are invisible 
to a conventional hardware watchdog. For example, a hardware watchdog 
can ensure that a driver is servicing the hardware, but may have a hard time 
detecting whether other programs are talking to that driver correctly. A 
software watchdog can cover this hole and take action before the driver itself 
shows any problems. 

Create core dump files for offline analysis 
While performing a partial restart, the software watchdog can also collect 
information about the nature of the software failure. For example, if the system 
contains, or has access to, mass storage (flash memory, hard drive, a network 
link to another computer with storage), the soft-ware watchdog can invoke a 
dumper utility that generates a chronological archive of core dump files. 
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A dump file provides the information needed to identify the source line that 
caused a process failure, along with a history of function calls, contents of data 
items, and other diagnostic information. The developer can debug the dump file 
as if it were a live application on the target system, stepping through call stacks 
to determine which events led to the problem. 

In some cases, the rogue process may have to be restarted as soon as 
possible. If so, the developer may need to restart the process and then 
complete the core dump. Some software-watchdog implementations, such as 
the QNX critical process manager, provide this level of control, allowing the 
developer to change the order of operations, grab kernel traces, and add 
decision-making capabilities. 

Using a variation of the dumper utility (the service responsible for grabbing core 
information from a dying process), the developer can create a dump file for a 
particular process even if the processes hasn’t yet attempted a memory 
violation. This utility simply sets a “hold” on the process, duplicates the code 
and data of the process into buffers, and then unholds the process. The utility 
then writes the buffers to a dump file. The benefit of all this? If a live sys-tem 
seems to be running strangely, the developer can take a snapshot for later 
analysis—without first forcing a shutdown or experiencing any down time.  

Uploading the fix 
By performing postmortem analysis of core dump files, the developer can 
debug and fix a problem offline, without having to remove the field-deployed 

 

Figure 3. Performing postmortem debugging on a core dump file.  
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system from service. However, once the problem has been corrected, there is 
still the challenge of updating the target system with the new code. 

When it comes to upgrading application-level code, most modern operating 
systems have little problem. In fact, some operating systems even allow new 
system services, such as drivers and protocols, to be dynamically attached to 
the kernel. However, because these services then run in kernel space, it’s 
difficult to stop, remove, and replace them with new versions. Upgrading them 
becomes difficult, if not impossible, unless the system is taken down and 
rebooted. 

To address these 
problems, an OS 
should, at a minimum, 
allow device drivers 
and other system 
services to be 
dynamically unloaded. 
But even then, there 
are many cases in 
which a driver may 
have to be upgraded 
without interrupting the 
service that the driver 
itself provides. 

 

As a result, the OS 
should allow a new 
version of the driver to 
start while the old 
version is still running, 
and then allow the new 
version to gracefully 
take over the existing driver’s duties. Once the transition is complete, the OS 
could terminate the old driver and recover whatever resources it was using. 

Using time-partitioning to diagnose problems 

 
Time partitioning provides a way to debug systems while ensuring that critical 
processes have the CPU cycles they need to run in a correct and timely 
fashion. Using this technique, developers place programs into virtual 

 

Figure 4. A software watchdog can restart problem 

components automatically, without downtime or operator 

intervention. The watchdog can also generate a process 

dump file for postmortem debugging, allowing developers 

to engineer a fix that can be uploaded to the field. 

 

Figure 5. With time partitioning, the system designer can reserve a 

guaranteed amount of CPU time for each software subsystem, including 

debug tools.  
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compartments, called partitions, and allocate a guaranteed amount of CPU time 
to each partition. These resource guarantees can: 

 contain denial-of-service (DoS) attacks 

 prevent poorly written or malicious processes from monopolizing resources 
needed by other processes 

 ensure that lower-priority functions always have the CPU cycles they 
require 

 allow the system to dynamically support new applications and services 
while ensuring that existing services still have sufficient computing 
resources 

Just as important, partitioning allows a developer to debug a system without 
starving critical processes of CPU time. For instance, the system designer 
could reserve 10% of CPU time for the debugger and any associated 
communications processes; see Figure 5. Because every other subsystem is 
also guaranteed a portion of CPU time, the cycles consumed by debug-ging 
operations won’t affect the performance or availability of the system’s core 
functions. 

Time partitioning can simplify day-to-day testing and debugging, before the 
system is deployed in the field. For example, in the unit testing phase, code 
defects can cause runaway conditions that bring debugging to a halt. In these 
situations, the system appears to be locked and the developer can recover only 
through a reset—thereby losing useful diagnostic information. To prevent this 
scenario from occurring, the developer can create a partition that guarantees 
CPU time for console login and remote debugging. These guarantees allow the 
developer to continue debugging and to collect the information needed to 
diagnose the problem. 

Allocating unused debug cycles to other processes 

Not all partitioning schedulers are created equal. Some implementations strictly 
enforce CPU budgets at all times, so that each partition will consume its full 
budget even when it has no work to do. Other implementations take a more 
flexible approach and dynamically allocate unused CPU cycles to partitions 
that could benefit from the extra processing time; this approach maximizes 
overall CPU utilization and allows the system to handle peak demands. For 
instance, in QNX Neutrino adaptive partitioning, the debug partition consumes 
its budgeted CPU cycles only when the debugger needs them. If the debugger is 
idle, the scheduler will allocate the idle cycles to other partitions. 

Developers can easily drop adaptive partitioning into an existing software 
design. It is based on the industry-standard POSIX programming model, so 
developers don’t have to rewrite code or learn special programming 
techniques. Within a partition, threads are scheduled according to the 
traditional rules of a preemptive, priority-based scheduler. Scheduling policies 
such as FIFO, round robin, and sporadic all operate within a partition. In effect, 
each partition becomes a separate virtual processor. 
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Partitioning for faster error notification and recovery 
Many embedded systems cannot tolerate downtime and must remain 
continuously available to users. Here is the formal definition of availability: 

             
    

         
 

MTBF represents the mean time between failures and MTTR the mean time to 
repair or resolve a particular problem. Simply put, you can increase availability 
both by reducing the frequency of failures and by reducing the time needed to 
recover from those failures. 

When a hardware or software subsystem fails in a high availability embedded 
system, soft-ware watchdogs and other automated recovery functions must 
return the system to a proper operating state. The faster such recovery 
functions execute, the lower the mean time to repair (MTTR) and the greater 
the overall system availability. Time partitioning can help by ensuring that these 
functions have the CPU time they require. 

In systems that typically run at very high CPU utilization, processes that monitor 
system health and report errors don’t get an opportunity to run in a timely 
manner. The CPU guarantees provided by time partitioning address this problem 
and ensure that routine diagnostic functions run as intended. These functions can 
thus detect and report problems before the problems result in hard failures. 

In the most severe cases, the operator must intervene to revive a system. To 
ensure the intervention is timely and effective, the system must quickly notify 
the operator of the failure and provide some way of diagnosing the problem. 
Again, partitioning helps by ensuring the system has enough CPU cycles to 
alert the operator and to provide guaranteed access to the user interface, be it 
a system console, remote terminal, or other method. 
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