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Automobile safety often depends on the correct operation of software-based 
systems constructed from many different components. Good design requires that 
these components be isolated from each other on multiple axes so that they do 
not inadvertently interfere with each other. 

ISO 26262: Road vehicles—
Functional Safety1 provides 
explicit guidance concerning 
interference, drawing 
particular attention to risks 
associated with interference 
between components of 
different Automotive Safety 
Integrity Levels (ASILs). It 
describes mechanisms to 
reduce these risks, suggests 
how partitioning must be 
handled, and specifies how 
the ASILs of composite 
systems must be calculated. 
In particular, paragraphs 
7.4.11 and 7.4.12 of Part 6 
(which refer to annex D) 
prescribe the manner in 
which partitioning must be 
handled, and paragraphs 6 
and 7 of Part 9 specify how 
the ASILs of composite sub-
systems are to be 
calculated. 

In this paper we present techniques that can help a) ensure that a system 
implements the component isolation required by ISO 26262, and b) demonstrate 
that this isolation has been implemented. We make no claims to offering anything 
more than an incomplete catalogue of some important techniques worth 
considering. Adequate treatment of each technique would require a book-length 
study, if not a library of studies. For more information, please contact us at 
chobbs@qnx.com or yzheng@qnx.com. 

                                                      
1 First edition, 2011. 

 

Figure 1. A digital instrument cluster showing 
information from components requiring different 
dependability levels 
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Interference 

Many systems built in accordance with ISO 26262 contain software elements 
developed to different ASILs. The incorrect behavior of one of these components 
could potentially interfere with the behavior of another component and lead to a 
violation of safety requirements. 

A violation of safety requirements occurs, not just when a lower-ASIL component 
interferes with a higher-ASIL one, but also when two components with the same 
ASIL interfere with one another—or even when a higher-ASIL component 
interferes with a lower-ASIL component. To help manufacturers avoid developing 
all components to the standard of the highest ASIL in the system, ISO 26262-6, 
paragraph 7.4.10 permits the use of software partitioning, in accordance with 
ISO 26262-9, paragraph 6, which defines interference as “the presence of 
cascading failures from a sub-element with no ASIL assigned, or a lower ASIL 
assigned, to a sub-element with a higher ASIL assigned leading to the violation 
of a safety requirement of the element”. 

Types of interference 

Interference comes in many types and differs according to whether the 
components are actively cooperating or are meant to be completely independent. 
The following is an incomplete list. One component may: 

 rob another component of system resources (file descriptors, mutexes, flash 
memory, etc.). By periodically using and not releasing a file descriptor, one 
process could eventually consume all the system's file descriptors and 
prevent a crucial process from opening a file in the flash memory when it 
needs to.  

 rob another component of processing time, preventing it from completing its 
tasks. By performing a processor-intensive calculation or by entering a tight 
loop under a failure condition, a process could prevent a critical process from 
running when it needs to. 

 access the private memory of another component. In the case of read 
access, this may be a security breach that could lead to a safety problem 
later; in the case of write access, this could immediately create a dangerous 
situation. 

 corrupt data shared with another component, causing the other component to 
behave in an unexpected and potentially unsafe manner. 

 create a deadlock or livelock with another component with which it is  
cooperating. In either case, the system makes no forward progress, allowing 
a dangerous situation to arise through inaction. The circumstances that give 
rise to deadlocks and livelocks are generally subtle and, because of their 
temporal nature, can seldom be detected or reproduced by testing. 

 break its contract with a  cooperating component by “babbling” (sending 
messages at a high rate or repeating messages) or sending messages with 
incorrect data. 



Protecting Software Components from Interference in an ISO 26262 System 

QNX Software Systems 3 

The isolation axes 

Isolation is a fundamental strategy for protecting against interference. No single 
form of isolation is sufficient. Table 1 below provides an overview of isolation 
techniques, which are described in more detail below, as are techniques for 
ensuring isolation and for avoiding deadlocks and livelocks. It offers a summary 
of the four isolation axes shown in Figure 2 below. 

 

Isolation Description Limitations 

Spatial 

Fundamental to all other forms of 
isolation. 

Provided by a memory-management 
unit (MMU) that protects the memory 
of each process from being accessed 
(read or written) by any other 
process. 

Not sufficient in itself. 

Hidden, incorrect assumptions in, for 
instance, formal design checking2 
can invalidate safety claims 
supported by proofs generated by 
these techniques. 

Temporal 

Rate- and deadline-monotonic 
scheduling can be used to 
demonstrate that processes in a 
simple system won’t be starved of 
processing time and will meet their 
real-time deadlines. 

Relatively inflexible. 

Difficult to incorporate varying 
overheads, aperiodic tasks, caching, 
varying priorities, bursty events, 
multicore processors, intrinsically 
unpredictable hardware (for instance, 
buses relying on collision detection). 

May require discrete event 
simulation3 and statistical guarantees 
to show that processes meet real-
time obligations. 

Data 

Static (unchanging) data: the 
memory pages containing the data 
are normally marked as read-only 
and a checksum can be used to 
ensure data integrity. 

Dynamic data: replication and 
diversification (multiple instances of 
the same data stored in semantically 
different forms). 

Performance penalty for verifying 
checksums before each access or for 
replicating data may be 
unacceptable. 

                                                      
2 See Michael Fisher, An Introduction to Practical Formal Methods Using Temporal Logic, 

Chichester, U.K.: Wiley, 2011. 
3 See many discussions, including in Jack P.C. Kleijnen, Design and Analysis of Simulation 

Experiments, New York, Springer, 2008, and many other texts. 
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Isolation Description Limitations 

Resource 

rlimit parameters can prevent one 
process from starving others. 

An anomaly detection program can 
learn what constitutes normal 
behavior, monitor resource 
allocations, and take corrective 
action. 

rlimit may fail to catch a process 
writing a large number of small files 
to flash memory. 

Often difficult to find training sets for 
supervised learning programs. 

An anomalous situation can occur 
very quickly and cause damage 
before it is detected. 

Table 1. Overview of the isolation axes 

 

Isolation techniques 

In general, it is best to isolate as many components as possible, using a variety 
of complementary techniques. 

OS architecture 

In a microkernel OS, 
components (file-system, 
device drivers, network 
stack, etc.) run in their 
own address spaces, 
isolated from each other 
as well as from the 
kernel.  

Rate- and deadline-

monotonic 

scheduling 

Rate- and deadline-monotonic both refer to scheduling policies and tools that can 
be used in simple systems to ensure that processes will meet their real-time 
deadlines.  

In a real-time system it is incorrect to assign priorities according to a process’s 
“importance”. Other methods must be used. With rate-monotonic scheduling, for 
example, the processes with greater execution rates receive the highest 
priorities4. That real-time deadlines will be met can then be mathematically 
proven for some systems. 

                                                      
4 Briand, Loïc and Daniel Roy Meeting Deadlines in Hard Real-Time Systems: The Rate 

Monotonic Approach, IEEE Computer Society, 3rd ed., 1999. 

 
Figure 2. The isolation axes 
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Adaptive partitioning  

Adaptive time partitioning can 
ensure that processes are not 
starved of CPU cycles, while 
also making sure that system 
resources are not wasted. It 
assigns minimum levels of 
processor time to a group of 
threads to use if the threads 
need it (see Figure 4). This 
technique reduces the work 
required to ensure that 
processes aren’t starved of 
cycles, and can be applied in 
complex systems where rate- 
or deadline-monotonic 
scheduling cannot be used. 

 

 

Effective use of adaptive 

partitioning 

Note that to make effective use of adaptive partitioning in a multi-core system, it 
is especially important to ensure that all available processor time is considered 
when time is being shared between the partitions. 

If all threads in a particular partition are waiting for external events, then no time 
needs to be allocated to that partition. On the other hand, if a) the threads in 
partition X could use more than their allotted time, b) these threads have a 
priority higher than other ready threads, and c) processing time is available, then 
the threads in partition X can be allocated the available time and executed. 

 

Figure 3. A microkernel OS architecture 

Figure 4. An example of adaptive partitioning. 
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Debugging thread 

Adaptive partitioning simplifies the analysis required to ensure that all critical 
threads meet their real-time budgets. In many systems it may also be useful to 
allocate a debug thread to a partition, and guarantee this thread processing time 
if it needs it.  

Under normal conditions, this debug thread is idle and, therefore, generating no 
overhead. However, if a high-priority process begins to run continuously, locking 
up the system, if the debug process has a sufficiently high priority it can acquire 
the cycles it needs to gather diagnostic information and interact with the 
programmer. 

Data diversification 

Data diversification is the storing of data in different semantic ways.5 It provides 
an additional level of confidence in the integrity of the data, based on the premise 
that, while one algorithm may give a wrong result, it is unlikely that two different 
algorithms will give the same wrong result. 

For example, the distance that a car has travelled since a particular event 
occurred might be stored as a) the number of rotations of the wheel and b) an 
integration of the car's speed at regular intervals. The information (distance 
travelled) is the same in both instances, but with the information stored in two 
formats the system can check for discrepancies, possibly, discover an 
algorithmic error in one of the calculations used to produce the information—and, 
perhaps, even correct it. 

There is also, of course, the possibility of data corruption, not because a process 
fails, but because of errors in the memory device.6 Such corruption is normally 
caught by using ECC memory devices, and is not a component isolation 
problem. 

Anomaly detection 

Predictor-corrector methods such as Kalman filters have traditionally been used 
to detect anomalies in external sensor inputs. These methods are less well suited 
for detecting anomalies in system variables, where there is rarely a random noise 
on a value. However, in a multi-threaded system random noise is usually 
present, so Kalman filters may be useful. In other cases, Markov chains may be 
used. Fortunately, as better unsupervised learning techniques become available, 
more effective methods for detecting these sorts of anomalies are emerging. 

                                                      
5 Data diversification has a very long history; Charles Babbage described it and the 

associated pattern of code diversity in 1837: “When the formula is very complicated, it 
may be algebraically arranged for computation in two or more distinct ways, and two or 
more sets of cards may be made. If the same constants are now employed with each 
set, and if under these circumstances the results agree, we may be quite secure in the 
accuracy of them.” Ammann and Knight offer a more contemporary description in 
Ammann, Paul E. and John C Knight, “Data diversity: An approach to software fault 
tolerance”, IEEE Transactions on Computers, 37(4):418–425, 1988. 

6 See Bianca Schroeder, Eduardo Pinheiro and Wolf-Dietrich Weber, “DRAM Errors in the 
Wild: A Large-Scale Field Study”, Seattle: SIGMETRICS/Performance ’09, June 15-19, 
2009. 
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Unsupervised learning 

In supervised learning, a set of training vectors is made available to the program 
being taught. With unsupervised learning models, no training set is provided. In 
reinforcement learning, for instance, the program receives no help finding 
patterns beyond punishment for mistakes and rewards for correct answers.  

Progress monitors 

Progress-monitor programs watch indicators in the system and take appropriate 
action should progress stop. They often include monitoring for process failures—
the most extreme form of non-progress. 

Validation techniques 

Auditors and regulatory bodies require assurances that isolation boundaries are 
not breached. Many techniques and tools exist to help demonstrate that these 
requirements are being met. Bonakdarpour and Fischmeister, for instance,7 
describe the characteristics of tools that, with operating system support, can 
trace interactions to demonstrate that inappropriate interactions are not occurring 
in the states invoked by the testing. Common techniques include discrete event 
simulation, formal design proving, static code analysis and flow tagging. 

Discrete event simulation 

Discrete event simulation can provide a statistical level of confidence of 
correctness in cases where it is impossible to provide a proof of correctness of 
an algorithm, protocol, or isolation—when, for instance, an event distribution is 
only available empirically.8 

Formal design proving  

If a design can be proven correct and code generated automatically from the 
proven design, then verification and testing times can be reduced substantially.  

The widespread adoption of formal design methods has been hampered by a 
lack of automatic theorem provers as well as a lack of designers able to handle 
the mathematical formalism of these methods. Recently, however, tools that hide 
much of the mathematics have become available, rendering formal design more 
accessible and practical.9 

Static code analysis 

A weakness of static code analysis is its propensity to generate false positives. 
Further, the languages we tend to use (for instance, C with its use of pointers) 
can make static analysis less effective. However, more sophisticated static 

                                                      
7 Borzoo Bonakdarpour and Sebastian Fischmeister, “Runtime Monitoring of Time-

sensitive Systems – Tutorial Supplement”, Proceedings of the 2nd International 
Conference on Runtime Verification (RV), San Francisco, 2011. 

8 See Kleinen, op cit. 
9 Jean-Raymond Abrial, “Rodin: an open toolset for modelling and reasoning in Event-B”, 

International Journal on Software Tools for Technology Transfer, 12(6): 447-466, 2010. 
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analysis tools are becoming available, with particular advances in techniques for 
exploiting contracts in the code, and for symbolic execution.10 

Flow tagging 

Flow tagging can be used to demonstrate that, under the conditions tested, no 
inappropriate interaction occurred between components. Combined with 
assertion statements containing linear temporal logic invariants, flow tagging can 
provide the basis for sophisticated analysis of component interaction and support 
claims of their isolation.11 

Deadlock and livelock avoidance 

Conditions on the behavior of a system are often divided into safety conditions 
(“the system never does anything wrong”) and liveness conditions (“the system 
always eventually does something right”).12 That said, the four Coffman 
conditions needed for deadlock13 were identified as early as 1971, and today we 
consider both deadlocks and livelocks as forms of non-progress, liveness 
conditions. 

Proving the correctness of liveness assertions is intrinsically difficult because the 
search space is, in principle, unbounded: what might the system do in the future? 
Nonetheless, various tools can help detect deadlocks and livelocks at different 
stages of system development. 

Design stage 

Tools are available to help detect deadlocks and livelocks, typically by analyzing 
an abstract model of the system, including both hardware and software. Some 
tools can generate code from the design, once it has been proven correct. 
Unfortunately, if the design is implemented manually, developers may introduce 
faults into the code and compromise the implementation.  

Coding stage 

Static analysis tools can sometimes detect potential deadlocks, though this is 
more difficult for languages such as C than for fully defined and strongly and 
statically typed languages. These tools perform tasks ranging from extracting 
semantic information from contracts embedded in the code (as comments in 
languages that do not directly support programming by contract) to symbolic 
execution―a cross between dynamic testing and static analysis.14 

                                                      
10 Cristian Cadar, Daniel Dunbar and Dawson Engler, “KLEE: Unassisted and Automatic 

Generation of High-Coverage Tests for Complex Systems Programs”, Proceedings of the 
8th USENIX conference on Operating systems design and implementation, 2008. 

11 A. Oliveira, A. Saif Ur Rehman and S. Fischmeister, “mTags: Augmenting Microkernel 
Messages with Lightweight Metadata”, ACM Operating Systems Review 46(2), 2012 

12 Byron Cook et al., “Proving that programs eventually do something good”, SIGPLAN 
Not., 42(1):265–276, Jan. 2007. See also Edward G. Coffman Jr., et al., System 
Deadlocks, ACM Computing Surveys 3 (2): 67–78, 1971 

13 Edward G. Coffman Jr.et al., System Deadlocks by ACM Computing Surveys 3 (2): 67–
78, 1971. 

14 See Cadar, op cit. 
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System is running 

Many systems provide a hardware watchdog that must be “kicked” periodically. 
However, it is difficult to determine which process(es) should kick the watchdog, 
because the watchdog remains oblivious to deadlocks from which it isn’t 
expecting a kick. It is often useful, therefore, to define conditions that guarantee 
that progress is being made (for instance, a message from process A is received 
and handled by process B, or the value of an integer is changing monotonically), 
then place a software process to monitor the condition and take action should 
progress stop. 

Conclusion 

No single approach can provide isolation between software components in 
accordance with the requirements of ISO 26262, just as no single approach can 
provide adequate proof of this isolation. Used together, however, complementary 
design and validation techniques can provide an adequate level of confidence 
that isolation has been achieved. Some of these approaches need help from the 
underlying operating system, but others can be implemented at the application 
level.  
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