

QNX Software Systems 1

Protecting Software Components

from Interference in an ISO 26262 System

Building Functional Safety into Complex Software Systems, Part IV

Chris Hobbs, Senior Developer, Safe Systems
Yi Zheng, Product Manager, Safe and Secure Systems
QNX Software Systems Limited

Automobile safety often depends on the correct operation of software-based
systems constructed from many different components. Good design requires that
these components be isolated from each other on multiple axes so that they do
not inadvertently interfere with each other.

ISO 26262: Road vehicles—
Functional Safety1 provides
explicit guidance concerning
interference, drawing
particular attention to risks
associated with interference
between components of
different Automotive Safety
Integrity Levels (ASILs). It
describes mechanisms to
reduce these risks, suggests
how partitioning must be
handled, and specifies how
the ASILs of composite
systems must be calculated.
In particular, paragraphs
7.4.11 and 7.4.12 of Part 6
(which refer to annex D)
prescribe the manner in
which partitioning must be
handled, and paragraphs 6
and 7 of Part 9 specify how
the ASILs of composite sub-
systems are to be
calculated.

In this paper we present techniques that can help a) ensure that a system
implements the component isolation required by ISO 26262, and b) demonstrate
that this isolation has been implemented. We make no claims to offering anything
more than an incomplete catalogue of some important techniques worth
considering. Adequate treatment of each technique would require a book-length
study, if not a library of studies. For more information, please contact us at
chobbs@qnx.com or yzheng@qnx.com.

1 First edition, 2011.

Figure 1. A digital instrument cluster showing
information from components requiring different
dependability levels

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 2

Interference

Many systems built in accordance with ISO 26262 contain software elements
developed to different ASILs. The incorrect behavior of one of these components
could potentially interfere with the behavior of another component and lead to a
violation of safety requirements.

A violation of safety requirements occurs, not just when a lower-ASIL component
interferes with a higher-ASIL one, but also when two components with the same
ASIL interfere with one another—or even when a higher-ASIL component
interferes with a lower-ASIL component. To help manufacturers avoid developing
all components to the standard of the highest ASIL in the system, ISO 26262-6,
paragraph 7.4.10 permits the use of software partitioning, in accordance with
ISO 26262-9, paragraph 6, which defines interference as “the presence of
cascading failures from a sub-element with no ASIL assigned, or a lower ASIL
assigned, to a sub-element with a higher ASIL assigned leading to the violation
of a safety requirement of the element”.

Types of interference

Interference comes in many types and differs according to whether the
components are actively cooperating or are meant to be completely independent.
The following is an incomplete list. One component may:

 rob another component of system resources (file descriptors, mutexes, flash
memory, etc.). By periodically using and not releasing a file descriptor, one
process could eventually consume all the system's file descriptors and
prevent a crucial process from opening a file in the flash memory when it
needs to.

 rob another component of processing time, preventing it from completing its
tasks. By performing a processor-intensive calculation or by entering a tight
loop under a failure condition, a process could prevent a critical process from
running when it needs to.

 access the private memory of another component. In the case of read
access, this may be a security breach that could lead to a safety problem
later; in the case of write access, this could immediately create a dangerous
situation.

 corrupt data shared with another component, causing the other component to
behave in an unexpected and potentially unsafe manner.

 create a deadlock or livelock with another component with which it is
cooperating. In either case, the system makes no forward progress, allowing
a dangerous situation to arise through inaction. The circumstances that give
rise to deadlocks and livelocks are generally subtle and, because of their
temporal nature, can seldom be detected or reproduced by testing.

 break its contract with a cooperating component by “babbling” (sending
messages at a high rate or repeating messages) or sending messages with
incorrect data.

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 3

The isolation axes

Isolation is a fundamental strategy for protecting against interference. No single
form of isolation is sufficient. Table 1 below provides an overview of isolation
techniques, which are described in more detail below, as are techniques for
ensuring isolation and for avoiding deadlocks and livelocks. It offers a summary
of the four isolation axes shown in Figure 2 below.

Isolation Description Limitations

Spatial

Fundamental to all other forms of
isolation.

Provided by a memory-management
unit (MMU) that protects the memory
of each process from being accessed
(read or written) by any other
process.

Not sufficient in itself.

Hidden, incorrect assumptions in, for
instance, formal design checking2
can invalidate safety claims
supported by proofs generated by
these techniques.

Temporal

Rate- and deadline-monotonic
scheduling can be used to
demonstrate that processes in a
simple system won’t be starved of
processing time and will meet their
real-time deadlines.

Relatively inflexible.

Difficult to incorporate varying
overheads, aperiodic tasks, caching,
varying priorities, bursty events,
multicore processors, intrinsically
unpredictable hardware (for instance,
buses relying on collision detection).

May require discrete event
simulation3 and statistical guarantees
to show that processes meet real-
time obligations.

Data

Static (unchanging) data: the
memory pages containing the data
are normally marked as read-only
and a checksum can be used to
ensure data integrity.

Dynamic data: replication and
diversification (multiple instances of
the same data stored in semantically
different forms).

Performance penalty for verifying
checksums before each access or for
replicating data may be
unacceptable.

2 See Michael Fisher, An Introduction to Practical Formal Methods Using Temporal Logic,

Chichester, U.K.: Wiley, 2011.
3 See many discussions, including in Jack P.C. Kleijnen, Design and Analysis of Simulation

Experiments, New York, Springer, 2008, and many other texts.

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 4

Isolation Description Limitations

Resource

rlimit parameters can prevent one
process from starving others.

An anomaly detection program can
learn what constitutes normal
behavior, monitor resource
allocations, and take corrective
action.

rlimit may fail to catch a process
writing a large number of small files
to flash memory.

Often difficult to find training sets for
supervised learning programs.

An anomalous situation can occur
very quickly and cause damage
before it is detected.

Table 1. Overview of the isolation axes

Isolation techniques

In general, it is best to isolate as many components as possible, using a variety
of complementary techniques.

OS architecture

In a microkernel OS,
components (file-system,
device drivers, network
stack, etc.) run in their
own address spaces,
isolated from each other
as well as from the
kernel.

Rate- and deadline-

monotonic

scheduling

Rate- and deadline-monotonic both refer to scheduling policies and tools that can
be used in simple systems to ensure that processes will meet their real-time
deadlines.

In a real-time system it is incorrect to assign priorities according to a process’s
“importance”. Other methods must be used. With rate-monotonic scheduling, for
example, the processes with greater execution rates receive the highest
priorities4. That real-time deadlines will be met can then be mathematically
proven for some systems.

4 Briand, Loïc and Daniel Roy Meeting Deadlines in Hard Real-Time Systems: The Rate

Monotonic Approach, IEEE Computer Society, 3rd ed., 1999.

Figure 2. The isolation axes

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 5

Adaptive partitioning

Adaptive time partitioning can
ensure that processes are not
starved of CPU cycles, while
also making sure that system
resources are not wasted. It
assigns minimum levels of
processor time to a group of
threads to use if the threads
need it (see Figure 4). This
technique reduces the work
required to ensure that
processes aren’t starved of
cycles, and can be applied in
complex systems where rate-
or deadline-monotonic
scheduling cannot be used.

Effective use of adaptive

partitioning

Note that to make effective use of adaptive partitioning in a multi-core system, it
is especially important to ensure that all available processor time is considered
when time is being shared between the partitions.

If all threads in a particular partition are waiting for external events, then no time
needs to be allocated to that partition. On the other hand, if a) the threads in
partition X could use more than their allotted time, b) these threads have a
priority higher than other ready threads, and c) processing time is available, then
the threads in partition X can be allocated the available time and executed.

Figure 3. A microkernel OS architecture

Figure 4. An example of adaptive partitioning.

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 6

Debugging thread

Adaptive partitioning simplifies the analysis required to ensure that all critical
threads meet their real-time budgets. In many systems it may also be useful to
allocate a debug thread to a partition, and guarantee this thread processing time
if it needs it.

Under normal conditions, this debug thread is idle and, therefore, generating no
overhead. However, if a high-priority process begins to run continuously, locking
up the system, if the debug process has a sufficiently high priority it can acquire
the cycles it needs to gather diagnostic information and interact with the
programmer.

Data diversification

Data diversification is the storing of data in different semantic ways.5 It provides
an additional level of confidence in the integrity of the data, based on the premise
that, while one algorithm may give a wrong result, it is unlikely that two different
algorithms will give the same wrong result.

For example, the distance that a car has travelled since a particular event
occurred might be stored as a) the number of rotations of the wheel and b) an
integration of the car's speed at regular intervals. The information (distance
travelled) is the same in both instances, but with the information stored in two
formats the system can check for discrepancies, possibly, discover an
algorithmic error in one of the calculations used to produce the information—and,
perhaps, even correct it.

There is also, of course, the possibility of data corruption, not because a process
fails, but because of errors in the memory device.6 Such corruption is normally
caught by using ECC memory devices, and is not a component isolation
problem.

Anomaly detection

Predictor-corrector methods such as Kalman filters have traditionally been used
to detect anomalies in external sensor inputs. These methods are less well suited
for detecting anomalies in system variables, where there is rarely a random noise
on a value. However, in a multi-threaded system random noise is usually
present, so Kalman filters may be useful. In other cases, Markov chains may be
used. Fortunately, as better unsupervised learning techniques become available,
more effective methods for detecting these sorts of anomalies are emerging.

5 Data diversification has a very long history; Charles Babbage described it and the

associated pattern of code diversity in 1837: “When the formula is very complicated, it
may be algebraically arranged for computation in two or more distinct ways, and two or
more sets of cards may be made. If the same constants are now employed with each
set, and if under these circumstances the results agree, we may be quite secure in the
accuracy of them.” Ammann and Knight offer a more contemporary description in
Ammann, Paul E. and John C Knight, “Data diversity: An approach to software fault
tolerance”, IEEE Transactions on Computers, 37(4):418–425, 1988.

6 See Bianca Schroeder, Eduardo Pinheiro and Wolf-Dietrich Weber, “DRAM Errors in the
Wild: A Large-Scale Field Study”, Seattle: SIGMETRICS/Performance ’09, June 15-19,
2009.

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 7

Unsupervised learning

In supervised learning, a set of training vectors is made available to the program
being taught. With unsupervised learning models, no training set is provided. In
reinforcement learning, for instance, the program receives no help finding
patterns beyond punishment for mistakes and rewards for correct answers.

Progress monitors

Progress-monitor programs watch indicators in the system and take appropriate
action should progress stop. They often include monitoring for process failures—
the most extreme form of non-progress.

Validation techniques

Auditors and regulatory bodies require assurances that isolation boundaries are
not breached. Many techniques and tools exist to help demonstrate that these
requirements are being met. Bonakdarpour and Fischmeister, for instance,7
describe the characteristics of tools that, with operating system support, can
trace interactions to demonstrate that inappropriate interactions are not occurring
in the states invoked by the testing. Common techniques include discrete event
simulation, formal design proving, static code analysis and flow tagging.

Discrete event simulation

Discrete event simulation can provide a statistical level of confidence of
correctness in cases where it is impossible to provide a proof of correctness of
an algorithm, protocol, or isolation—when, for instance, an event distribution is
only available empirically.8

Formal design proving

If a design can be proven correct and code generated automatically from the
proven design, then verification and testing times can be reduced substantially.

The widespread adoption of formal design methods has been hampered by a
lack of automatic theorem provers as well as a lack of designers able to handle
the mathematical formalism of these methods. Recently, however, tools that hide
much of the mathematics have become available, rendering formal design more
accessible and practical.9

Static code analysis

A weakness of static code analysis is its propensity to generate false positives.
Further, the languages we tend to use (for instance, C with its use of pointers)
can make static analysis less effective. However, more sophisticated static

7 Borzoo Bonakdarpour and Sebastian Fischmeister, “Runtime Monitoring of Time-

sensitive Systems – Tutorial Supplement”, Proceedings of the 2nd International
Conference on Runtime Verification (RV), San Francisco, 2011.

8 See Kleinen, op cit.
9 Jean-Raymond Abrial, “Rodin: an open toolset for modelling and reasoning in Event-B”,

International Journal on Software Tools for Technology Transfer, 12(6): 447-466, 2010.

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 8

analysis tools are becoming available, with particular advances in techniques for
exploiting contracts in the code, and for symbolic execution.10

Flow tagging

Flow tagging can be used to demonstrate that, under the conditions tested, no
inappropriate interaction occurred between components. Combined with
assertion statements containing linear temporal logic invariants, flow tagging can
provide the basis for sophisticated analysis of component interaction and support
claims of their isolation.11

Deadlock and livelock avoidance

Conditions on the behavior of a system are often divided into safety conditions
(“the system never does anything wrong”) and liveness conditions (“the system
always eventually does something right”).12 That said, the four Coffman
conditions needed for deadlock13 were identified as early as 1971, and today we
consider both deadlocks and livelocks as forms of non-progress, liveness
conditions.

Proving the correctness of liveness assertions is intrinsically difficult because the
search space is, in principle, unbounded: what might the system do in the future?
Nonetheless, various tools can help detect deadlocks and livelocks at different
stages of system development.

Design stage

Tools are available to help detect deadlocks and livelocks, typically by analyzing
an abstract model of the system, including both hardware and software. Some
tools can generate code from the design, once it has been proven correct.
Unfortunately, if the design is implemented manually, developers may introduce
faults into the code and compromise the implementation.

Coding stage

Static analysis tools can sometimes detect potential deadlocks, though this is
more difficult for languages such as C than for fully defined and strongly and
statically typed languages. These tools perform tasks ranging from extracting
semantic information from contracts embedded in the code (as comments in
languages that do not directly support programming by contract) to symbolic
execution―a cross between dynamic testing and static analysis.14

10 Cristian Cadar, Daniel Dunbar and Dawson Engler, “KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs”, Proceedings of the
8th USENIX conference on Operating systems design and implementation, 2008.

11 A. Oliveira, A. Saif Ur Rehman and S. Fischmeister, “mTags: Augmenting Microkernel
Messages with Lightweight Metadata”, ACM Operating Systems Review 46(2), 2012

12 Byron Cook et al., “Proving that programs eventually do something good”, SIGPLAN
Not., 42(1):265–276, Jan. 2007. See also Edward G. Coffman Jr., et al., System
Deadlocks, ACM Computing Surveys 3 (2): 67–78, 1971

13 Edward G. Coffman Jr.et al., System Deadlocks by ACM Computing Surveys 3 (2): 67–
78, 1971.

14 See Cadar, op cit.

Protecting Software Components from Interference in an ISO 26262 System

QNX Software Systems 9

System is running

Many systems provide a hardware watchdog that must be “kicked” periodically.
However, it is difficult to determine which process(es) should kick the watchdog,
because the watchdog remains oblivious to deadlocks from which it isn’t
expecting a kick. It is often useful, therefore, to define conditions that guarantee
that progress is being made (for instance, a message from process A is received
and handled by process B, or the value of an integer is changing monotonically),
then place a software process to monitor the condition and take action should
progress stop.

Conclusion

No single approach can provide isolation between software components in
accordance with the requirements of ISO 26262, just as no single approach can
provide adequate proof of this isolation. Used together, however, complementary
design and validation techniques can provide an adequate level of confidence
that isolation has been achieved. Some of these approaches need help from the
underlying operating system, but others can be implemented at the application
level.

About QNX Software Systems

QNX Software Systems Limited, a subsidiary of BlackBerry, is a leading vendor of
operating systems, development tools, and professional services for connected
embedded systems. Global leaders such as Audi, Cisco, General Electric, Lockheed
Martin, and Siemens depend on QNX technology for vehicle infotainment units, network
routers, medical devices, industrial automation systems, security and defense systems,
and other mission- or life-critical applications. Founded in 1980, QNX Software Systems
Limited is headquartered in Ottawa, Canada; its products are distributed in more than
100 countries worldwide. Visit www.qnx.com and facebook.com/QNXSoftwareSystems,
and follow @QNX_News on Twitter. For more information on the company's automotive
work, visit qnxauto.blogspot.com and follow @QNX_Auto.

www.qnx.com

© 2013 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, Aviage
are trademarks of QNX Software Systems Limited, which are registered trademarks
and/or used in certain jurisdictions. All other trademarks belong to their respective
owners.
302249 MC411.131

http://www.qnx.com/
https://www.facebook.com/QNXSoftwareSystems
http://twitter.com/QNX_News
http://qnxauto.blogspot.com/
http://twitter.com/QNX_Auto

