

QNX Software Systems Limited 1

The Dangers of Over-Engineering a Safe System
Building Functional Safety into Complex Software Systems, Part III
Chris Hobbs, Senior Developer, Safe Systems
QNX Software Systems Limited

Abstract
Hasty attempts to deal with a specific safety issue without carefully considering the
question of overall system dependability may lead to a great deal of work for little or
no benefit, and the unwitting introduction of significant new problems.

For our discussion, we look at the
hypothetical example of an in-cab train
controller for an Automated Train
Operations (ATO) system to be used in
a Light Rapid Transit (LRT) system at a
high-altitude location where the high
neutron flux increases the threat of soft
bit errors in DRAM. We examine the
effect on dependability of adding
software error detection to a 2-out-of-2
system, consider the benefits and
adverse consequences of this additional
check, and suggest some other
approaches to improving dependability
that might be effective.

Two tragic corrections
Two tragedies, one maritime, the other
aviation, can illustrate how well-
meaning but ill-thought solutions can
precipitate the very tragedies they are
meant to avoid. The first tragedy
occurred in the Chicago River in 1915.
The SS Eastland listed and rolled over,
killing more than 840 passengers and
crew. On its web site, the Eastland
Memorial Society notes that, according to George W. Hilton, who wrote Eastland:
Legacy of the Titanic,

the Eastland's top-heaviness was largely due to the amount and weight of the
lifeboats required on her. He explains that after the sinking of the Titanic in 1912, a
general panic led to the irrational demand for more lifesaving lifeboat capacity for
passengers of ships. Lawmakers unfamiliar with naval engineering did not realize
that lifeboats cannot always save all lives, if they can save any at all.1

In conformance to new safety provisions of the 1915 Seaman’s Act, the lifeboats
had been added to a ship already known to list easily. As Hilton notes, lifeboats
made the Eastland less not more safe. Other factors, such as the manner and
speed at which a ship sinks may more significantly affect the number of deaths, as
they determine whether the lifeboats can even be used.

Elephants in the room
In this discussion of safe software
systems we are knowingly ignoring two
large elephants in the room: security
and in-use errors. For the sake of
simplicity, we are assuming that the
systems we are evaluating are
absolutely secure, and that no person
using them will ever use them
incorrectly.

We know that, in practice, these
assumptions are both incorrect and
dangerous: a) a system cannot be
deemed absolutely secure any more
than it can be deemed absolutely safe;
and b) people using a system will make
mistakes, often seemingly random
mistakes which fall outside all
previously considered scenarios. In
practice, then, we will need to
incorporate security risks and human
in-use errors in our evaluations of
software system safety levels.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 2

The second tragedy occurred in Antarctica in 1979. Air New Zealand Flight 901
flew straight into a mountain, killing all 257 people on board. According to the New
Zealand Transport Accident Investigation Commission’s report, the computer flight
plan for this flight “had been in error for 14 months…. This error was not corrected
until the day before the flight …” and “The crew was shown a copy of the
erroneous flight plan with the incorrect co-ordinates … but the flight plan issued on
the day of the flight was correct”.2 Of the 10 contributing factors found by the Royal
Commission charged with investigating the accident, only two were identified as
“blameworthy acts or omissions”: failure to supply the pilots with topographical
maps of their intended flight path, and, especially failure to inform the pilots of the
corrections made in the computer flight path. Not knowing of the corrections, the
pilots thought that they were flying over McMurdo Sound, when in fact they were in
fact headed into Mount Erebus. The Royal Commissioner, P. T. Mahon does not
mince his words:

In my opinion therefore, the single dominant and effective cause of the disaster
was the mistake made by those airline officials who programmed the aircraft to fly
directly at Mt. Erebus and omitted to tell the aircrew.3

As with the sinking of the SS Eastland, a correction of one threat (an incorrect flight
path) inadvertently added stress to the larger system (correct navigation of the
aircraft) and precipitated a tragedy.

About safety claims
When we design a safe software system, one of our first tasks must be to determine
its safety requirements. This means that we must determine:

• the system’s required level of dependability; or, inversely, the acceptable level
of system failure

• the limits of our safety claims; that is, the conditions and constraints within
which we make our dependability claims

If we can demonstrate that within the limits of our safety claims our system
achieves its required the level of dependability, then we can claim that the system
is sufficiently safe.

Reliability or availability?
For a software system, dependability is a combination of availability (how often the
system responds to requests in a timely manner) and reliability (how often these
responses are correct). Thus, a dependable software system is a system that
responds with the correct answer, when it is required and in the time required.
When we define sufficient dependability for a system, we must take care to
understand both the required reliability and the required availability. The relative
importance of availability versus reliability varies from system to system, depending
on what the system is designed to do.

The bicycle paradigm
The bicycle is an excellent paradigm for thinking about dependability, because its
safe use so obviously requires both reliability and availability. The rider must make
the correct decisions about steering, speed, balance, etc. or the bicycle will run
into something. Unless the rider is a circus performer who can balance a stationary
bicycle, she must also keep the bicycle moving or it will fall over.

Imagine a riderless bicycle run by a software controller. The controller must make
the correct decisions (it must be reliable) in order to get the bicycle to its

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 3

destination without incident, and it must do so continuously (it must be available).
Any failure that forces the controller into a design safe state (which usually means
stopping) for too long would result in a catastrophic failure, just as surely as would
a failure that caused the bicycle to turn incorrectly. In fact, because our riderless
bicycle must keep moving in order to stay upright, our controller has no design safe
state that does not place the larger system (the bicycle) in a dangerous state.

A simple safe system
The system we will use for our discussion is a very simple, hypothetical in-cab
controller (for an equally hypothetical) ATO system running a driverless Light Rapid
Transit (LRT) system. Figure 1 below illustrates this system. For simplicity, we have
assumed that the train runs on a circular track, and we have shown the system
checking only four values:

• the state of the train (moving or not moving)

• the time in the station (more than 90 seconds or less than or equal to 90
seconds)

• the state of the doors (open or closed)

• whether the train has entered the station (entered or not entered)

When it is initialized, our train begins in
a stopped state, opens its doors, waits
90 seconds, closes the doors and
moves on to the next station. When the
train enters a station, it stops and opens
its doors, waits, then continues on in an
endless loop until it finishes its day. Its
design safe state is “stopped”.

The controller
The controller is a 2-out-of-2 (2oo2)
system; it has two processing
subsystems, which must agree that it is
safe to keep the controller out of its
design safe state. (See “About the 2oo2
system” on page 6 and Figure 2 on
page 7.) If either subsystem indicates
that the controller cannot run safely,
then the controller cannot run. A 2oo2
design increases the system’s
complexity, but we consider that the
consequences of the controller not
working correctly are sufficiently dire to warrant the time and effort duplication
requires.

For the purpose of this discussion, the precise criteria which this system uses to
determine if it must move the controller to a design safe state are less important
than the fact that whatever the controller does, it must do unfailingly. Opening the
doors while the train is moving, or starting to move while the doors are open and
passengers are embarking or disembarking may injure or kill someone. We will
therefore assume that the system must be certified to IEC 61508 Safety Integrity
Level 3 (SIL3), which means that the “probability of a dangerous failure” is less

2oo2 or 1oo2?
According IEC 61508, Part 6 our
system is a 1-out-of-2 system (1oo2),
because one subsystem on its own can
decide to move the system into its
design safe state.

The difference in nomenclatures arises
because IEC 61508 uses definitions
inherited from hardware design,
describing the decision architecture
based on the number of votes required
to move the system into its design safe
state, while we use a definition, now
common with software design, which
describes the decision architecture
based on the number of votes required
to keep the system out of its design
safe state.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 4

than one in 107 per hour of continuous operation. We are assuming that this
requirement has been met in the original controller design, but that a new risk,
which was not considered when the original requirements were written, has just
been identified.

Figure 1. A very simplified view of an ATO controller that moves to a safe state if it detects
any dangers or anomalies. The system receives data from timers and sensors about the
location of the train, its movement, the state of the train doors, and the time it has been in a
station. It sends instructions to start and stop the train, and to open and close the doors.
Before sending an instruction, it the checks with its 2oo2 system to determine if it is safe to
continue.

A new vulnerability
The problem we face is that, though the effects of radiation on computer memory
have long been known, when the original specifications for our system were written
no one thought to include the threat of memory errors caused by cosmic rays.

A change of context
Our hypothetical controller has already proven itself in Rome and several other
locations. Now a new customer is considering it for an LRT ATO in the La Paz-El
Alto metropolitan area in Bolivia. La Paz-El Alto has almost 2.5 million inhabitants
living at an elevation that rises above 4,100 metres (13,600 ft.—higher than Mount
Erebus). This is a significant change in context, because the threat of soft and hard
memory errors caused by cosmic rays increases with elevation. The customer asks
for proof that our system can still meet its safety requirements when the risk of soft
memory errors caused by radiation is included in our dependability estimates. The
increased altitude would also require us to revisit other design conditions, such as
cooling, but in the interests of simplicity we will not consider these here.

We should start by congratulating our customer for recognizing that, whatever our
system’s previous successes, and however many millions of hours it ran without
failure in Rome and elsewhere, changing the context of the system may have

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 5

invalidated some or all of the data on which its dependability claims were based.
Specifically, cosmic rays have long been identified as a significant cause of soft
memory errors, with neutrons the main culprit4. The greater the number of
neutrons that pass through an area in a given time (relative neutron flux), the
higher the risk that neutrons will cause a memory error. Neutron flux varies with
location (chiefly but not exclusively latitude) and, especially, altitude. The Seutest5
neutron flux calculator gives a relative neutron flux for La Paz-El Alto that is roughly
11 times that in Rome.6

Errors and false positives
Our problem is twofold: memory errors may cause our controller to fail, and they
may create false positives, prompting the controller to move to its design safe state
unnecessarily. It is even possible that radiation will cause a soft memory error and
affect the same bit in both processing subsystems at the same time causing the
controller to fail and allow the train to function when it should be moved to a design
safe state. It is far more likely, however, that a soft memory error in only one
subsystem will cause a false positive in the 2oo2 system and provoke unnecessary
controller and ATO shutdowns.

False positives in our controller may not compromise safety directly. The 2oo2
design that moves everything to a safe state in the event of any disagreement
between subsystems creates a highly reliable system. However, dependability (and
hence safety) also depends on system availability. Though availability appears to be
less important than reliability in this system (a stopped train is usually less
dangerous than a moving train) compromises to controller availability do in fact
compromise overall safety:

• An LRT train that has stopped (due to a false positive in the controller or any
other reason) will not be where it is expected to be. This may reduce the time
and distance between trains, and increase the need for reliance on systems
communicating and setting train locations, safe distances, etc., placing added
stress on the wider system.

• If a system does not perform as required—if it is not available when needed—
people find ways to make them work, often by circumventing the safety
checks. For example, if a sensor intermittently reports one of twelve train doors
open when it is shut, users may find ways to bypass the sensor in order to
keep the train running, on the dangerous assumption that if 11 doors are shut
the twelfth door must also be shut.

Given the increased threat of soft memory errors and their possible consequences
in our system’s proposed new context, we agree with the customer that we should
look further into the effect of soft memory errors on our system’s dependability.

Software error detection
Since the problem is memory errors, it seems obvious that the solution is to add
memory error detection to our system. Of course, before we do this we should be
certain that this solution will

a) be effective

b) not compromise safety

What follows is a description of the controller, our assumptions about its 2oo2
subsystem and handling of memory errors, and our calculations of dangerous
failure rates with and without the software error detection. The results of these

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 6

calculations will tell us if software error detection makes an appreciable
improvement to our system’s dependability, or if we should consider other methods
to ensure that our controller is sufficiently dependable in its new context.

About the 2oo2 system
The 2oo2 system that allows our ATO controller to move from its design safe state
and perform its tasks running the LRT functions as follows:

1. Two independent processing subsystems receive the same stimuli (events)
from the outside environment.

2. Each processing subsystems uses the events it receives from the outside
environment to independently calculate whether the controller should move to
its design safe state.

3. Each processing subsystem presents the result of its calculation (“Yes” or
“No”) to a gating subsystem (shown in Figure 2 below as an AND gate).

4. The gating subsystem compares the two outputs from the processing
subsystems.

5. If both outputs agree that the controller may be kept out of its design safe
state, the controller is allowed to continue running.

6. Under any other condition, the gating subsystem requires the controller to
revert to its design safe state.

Assumptions about the gating subsystem
We assume that the gating subsystem is approved to IEC 61508 SIL4. For a system
operating in a low-demand mode, this safety integrity level requires that the
subsystem will correctly detect the difference between the two outputs from the
processing subsystems 9,999 times out of 10,000. For a high-demand system or a
system in continuous operation, the SIL4 rating means that the probability that it
will fail to detect a difference between the two processor outputs is less than 10−8

per hour of operation.

Assuming that the role of the gating subsystem is to actively hold the ATO controller
out of its design safe state, the continuous mode of operation may be more
applicable. However, for the purposes of this calculation, the more conservative
low-demand mode numbers are used, because they assume a less dependable
gating subsystem.

Error detection
The gating subsystem must detect a disagreement between the processing
subsystems in two different circumstances:

• A non-recoverable memory error (multi-bit) has occurred in one of the
processing subsystems, causing that processor to shut down.

• An application error (possibly caused by an application bug, possibly by an
undetectable memory error) has occurred on one processing subsystem but
not on the other.

In both cases the output from one or both of the processing subsystems will be
something other than “OK”, in which case the gating subsystem requires the ATO
controller to revert to its design safe state.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 7

While it could be argued that the gating subsystem should be able to detect the
shutdown of a processing subsystem more reliably than an application error, for the
calculation below we assume that both types of detection are only accurate 9,999
times out of 10,000. This is probably a conservative view but, as with the
assumption of SIL4 for a low-demand system, it is used because it assumes a less
dependable system. If a less dependable gating subsystem is sufficiently
dependable, then a more dependable gating subsystem (SIL4 for high demand,
greater reliability detecting processing subsystem shutdowns) will also produce a
system sufficiently dependable for our purposes.

Assumptions about the processing subsystems
We assume that, in the absence of any memory failures, the two processing
subsystems in our 2oo2 system have a dependability one order of magnitude lower
than SIL1 (i.e., the probability of their delivering an incorrect response is less than
10−4 per hour of operation). In the calculations below we assumed that these
failures occur with a negatively exponentially distributed arrival time with λ = 10−4
per hour.

Figure 2. A high-level view of the ATO controller’s 2oo2 gating system. Both processing
subsystems must agree that it is safe for the controller to run.

The probability of two simultaneous incorrect answers
It is essential for us to know the correlation between the failures of the two
processor subsystems: What is the probability that both processors will calculate an
incorrect answer simultaneously?

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 8

Given than most errors will occur in the application (rather than the operating
system, which has millions of hours of dependable in-field use), and assuming that
the application is common to both subsystems, based on our (hypothetical) fault
injection testing we can assume in what follows that there is a 70% chance that an
error in one processor subsystem will also appear in the other processor
subsystem.

Since most errors that go undetected during system validation are likely to be
Heisenbugs rather than Bohrbugs,7 we consider our estimate to be conservative.
Like all of the other values we use in this paper, its validity would need to be
assessed during testing and field trials.

Assumptions about the memory devices
We assume that the memory devices (DIMMs) in our 2oo2 system have single-bit
error correction and multiple-bit error detection (SECDED) ECC algorithms built in
based on a Hamming code with a minimum distance of 4. We also assume that the
memory devices do not have Chipkill algorithms.

It is difficult to get firm figures for the failure of memory devices. Until Schroeder,
Pinheiro and Weber’s 2009 publication of a large study of Google servers, “DRAM
Errors in the Wild: A Large-Scale Field Study”8 the anticipated errors rates were in
the order of 200 to 5000 FITs9 per Mbit. With these estimates, a 2 Gigabyte DRAM
could expect an error every 12 to 313 hours of operation. The Google study found
something quite different. It discovered that DRAMs experienced either no errors or
a large number of errors: their figures were 25,000 to 75,000 FITs per Mbit. The
75,000 figure corresponds to an error every 50 minutes of operation for a
2 Gigabyte DRAM.

In order to have a justifiable error rate for calculation, we used the raw information
extracted from Table 2 (page 4) of the Google study (DRAMs for platforms A, B, C,
D and F) converted to FITs per Mbit. From this information we can assume a value
of 36,707 FITs per Mbit as a reasonable value for correctable errors (i.e., single bit
errors corrected by the ECC hardware in the memory device).

The Google study indicates that between 0.08% and 0.3% (mean 0.22%) of
DIMMs experience an uncorrectable error per year, and that there is a significant
correlation between correctable and uncorrectable errors: if a correctable error
occurs on a DIMM, then the probability of seeing an uncorrectable error on that
DIMM within the same month is between 9 and 47 times higher than on a DIMM
where no correctable error was observed.10

For the sake of our modeling, we assume that detected but uncorrectable errors
occur at a rate of 1 every 1/0.22 = 4.5 years per 2 Gigabyte DIMM. This value
corresponds to approximately 3 FITs per Mbit, a value supported by the 2004
paper “Soft Errors in Electronic Memory—A White Paper” from Tezzaron
Semiconductor, which says that uncorrectable errors occur one to two decimal
orders of magnitude less often than correctable ones.11

One value that is impossible to deduce from the statistics given in the Google paper
is the rate of undetected memory errors: by definition these errors were not
detected, so no figures are available—or can ever be available—for them.12 To be
cautious in our estimations, in the following calculation we assume that these
undetected bugs occur with a frequency one decimal order of magnitude lower
than uncorrectable errors; that is, 0.3 FITs per Mbit. Thus, in summary, for our
calculations we assume the following error rates:

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 9

• Detected and corrected errors: 36,707 FITS per Mbit

• Detected but uncorrectable errors: 3 FITS per Mbit

• Undetected errors: 0.3 FITS per Mbit

Assumptions about handling memory errors
Three types of memory failure are possible. In our calculations we make the
following assumptions about how these three error types are handled.

Detected and correctable memory errors
Detected and correctable memory errors are counted, but otherwise ignored
because they are corrected by the hardware and are invisible to the application. In
light of the evidence presented in the Schroeder et al. study of Google servers,
however, in a real product it would be wise to monitor these errors: correctable
errors today appear to be strongly correlated with uncorrectable errors tomorrow.

Detected but uncorrectable memory errors
Detected but uncorrectable memory errors are assumed to cause the associated
processor to shut down. This shutdown will almost certainly be detected by the
gating subsystem and cause the system to take appropriate action to recover or
move to a design safe state (see “Assumptions about the gating subsystem”
above). However, if the processor shutdown passes undetected by the gating
subsystem, it will lead to a dangerous failure of the entire system.

Undetected memory errors
Undetected memory errors are clearly the most dangerous type of error. In
practice, many undetected errors will affect unused or uninitialized memory and
will be, therefore, harmless. However, we must expect that some of these errors will
affect active memory. The result may be relatively benign, say an incorrect
character in a string for display to a user (benign if we assume that the affected
character does not cause the user to take an incorrect action). Unfortunately,
though, in some cases an error in active memory will cause the two processing
subsystems to give different answers, and the gating subsystem must detect the
discrepancy.

For the calculations in this document, we assume that all undetected memory
errors cause the affected processor to produce wrong values. This is a very
conservative estimate; many undetected memory errors may have no effect on a
processor. We use this estimate, however, with the view that it is more prudent to
assume the worst.

Calculation with no software error detection
To estimate the dangerous failure rate, we ran a simulation of 109 years (about 88
× 1012 hours) 100 times, enough to obtain sufficient results for us to calculate a
confidence interval.13 The results of our simulation are shown in Table 1, which
should be read as follows: “It can be said with 99% confidence that, given the
assumptions listed above, the dangerous failure rate lies between 7.96157 and
8.01067 FITs.”

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 10

Confidence Level
Dangerous Fai lure Probabil i ty

Lower Bound Upper Bound

95.0% 7.96884 FITs 8.00340 FITs

97.5% 7.96547 FITs 8.00677 FITs

99.0% 7.96157 FITs 8.01067 FITs

Table 1. Results of calculation for estimated dangerous failure rate, with no software error
detection.

Thus, combining two SIL0 processing subsystems with a SIL4 (low-demand mode)
gate and without using software memory error detection, the resulting system is a
SIL4 system.

Limits of our calculations
Note, that we have not performed the
second essential calculation as
described in “Assumptions about the
processing subsystems” above. We
have shown that, subject to the
assumptions given, the system provides
the safety level required, but we have
not shown that it can meet its
availability targets. A system that never
moves from its design safe state (a train
that is always stationary, a traffic light
that is always red, etc.) is safe but
useless or worse.14 For a real system,
we would have to make the availability
calculation to show that our system is
not only reliable, but also available and
useful (see the bicycle paradigm
“Reliability or availability?” above).

Calculation with software
error detection
Given the relatively slow speed at which
application-level software error
detection operates (about 23 hours to
test two Gigabytes of memory),15 it is
likely that ECC hardware will find both
correctable and detectable but
uncorrectable memory errors well
before the software finds them.

Software could, however, complement
the ECC hardware and be used to find
hard memory errors that have slipped
by the ECC circuitry undetected.
Software error detection could be
useful, therefore, in the following circumstance:

Hard and Soft Memory Errors
Memory errors are often referred to as
“hard” or “soft”. A hard memory error
is a memory error that is permanent: a
section of memory (one bit or several
bits) is no longer able to accept and
keep its setting. A soft memory error is
transient: a bit fails to keep its setting,
but may behave correctly the next time
it is used—perhaps every time it is
used following the single failure.

While the difference between hard and
soft errors may be immaterial to the
software designer creating a software
that must recover in the event of any
memory errors, it is important to the
designers of the overall system.

Schroeder et al. note a correlation
between soft memory errors and the
appearance in the future of hard
memory errors. Further, as electronic
components decrease in size, the
speed at which they wear out and fail is
increasing. Soft errors may be the
canary in the coal mine announcing the
imminent hard failures. Safety may
depend not just on software that can
(usually) recover from memory errors,
but on maintenance programs that
replace suspect boards and reduces
the stress on this software.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 11

1. An undetected memory error occurs.

2. This error affects the operation of one processing subsystem, causing it to give
an incorrect answer, and

3. This error is not caught by the gating subsystem.

For our calculation, we have assumed that, if the conditions described above
occur, then the software check has an 80% chance of finding the error and forcing
a halt on the affected processor. This halt may, or may not, be caught by the gate
subsystem.

When we re-ran the simulation with these assumptions, we found that there is
effectively no change in the probabilities of dangerous failure given in Table 1 for
the same system without software error correction. Our system remains a SIL4 (low-
demand mode) system.

Summary of findings concerning software error correction
The 2oo2 model provides an excellent controller design for providing system safety.
Even with very low levels of dependability in the processing subsystems, the
probability of dangerous failure is very low. Given the assumptions we have worked
with, adding software detection of memory errors makes no appreciable difference
in our system’s dependability, and, in any case, detection is far too slow to be
useful for detecting soft errors16. In short, software detection of soft memory errors
does not appear to be a terribly useful solution for dealing with soft memory errors
in our hypothetical ATO controller.

Rethinking the problem
Soft memory errors are a real threat, and the incidence of these errors caused by
cosmic radiation is very likely to increase with altitude. For our LRT controller,
software error detection does not appear to be a good solution, for two reasons: a) it
is too slow, and b) it does not appreciably reduce the probability of our controller
failing. Our hypothetical controller’s 2oo2 design appears to ensure our system’s
safety.

For our system, we should remember that just because the system is sufficiently
safe, it is not necessarily sufficiently available—or, for that matter, even useful. We
have noted that with our 2oo2 design, false positives can significantly compromise
our controller’s availability,17 which may not only make our controller perform
poorly, but also compromise the safe operation of the LRT by putting added stress
on the correct and safe operation of other ATO components.

Did we try to solve the right problem?
In his article about the 2005 grounding of the Queen of Oak Bay in Horseshoe Bay,
British Columbia, Terry Hardy notes that on this ship redundancy was implemented
in such a way that it was perfectly useless when both engines were shut down:

While redundancy can theoretically improve reliability, redundancy can also
increase system complexity and lead to unforeseen failures. In addition,
redundancy can introduce unforeseen dependencies that can decrease safety.18

In other words, the redundant engines only improved system reliability if nothing
compromised the engines’ availability. As it turned out, both engines were
unavailable and the entire system failed. Fortunately, no one was hurt in this
accident.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 12

Keeping in mind that our ATO system appears to be sufficiently safe but that we
may not have given adequate consideration to availability, it may be worth our while
to step back and try to rethink the problem. We could start by asking ourselves if
the problem we are trying to solve is indeed soft memory errors.

As with so many questions in the real world, the answer is both “Yes” and “No”. It
is “Yes” in that soft memory errors may create false positives in our 2oo2
subsystem, forcing our controller into a design safe state and compromising its
availability. It is “No”, in that we only care about soft memory errors insofar as they
might cause the controller to actually fail. What we really care about is that the
controller is sufficiently dependable, which means both sufficiently reliable and
sufficiently available.

Our 2oo2 design ensures our system is sufficiently safe. As we saw above, the
probability that our system will deliver an incorrect response is within the
requirements of IEC 61508 SIL4. As we also saw above, this carries a cost of
possibly reduced availability. We could, therefore, rephrase our problem as follows:

1. We are confident that our system is sufficiently safe.

2. We are not confident that our system is sufficiently available.

3. Therefore, how can we improve our system’s availability without compromising
its safety?

Alternate strategies
The following are a few suggestions that may help improve controller availability.
We are assuming that we will not alter the 2oo2 design, as it is fundamental to our
reliability claims, and that we would perform the appropriate calculations to
evaluate the effect of each change we implement.

Second opinions
If there is time to ask for an information refresh when gating doesn’t agree, then
asking for this refresh may be an excellent solution. Since soft memory errors are
by their nature transient, if the disagreement in the two gating subsystem
processors is caused by a soft error, a refresh will likely provide correct and
matching answers, and avert a false positive. If the second opinion confirms the
first disagreement, then we can be confident that something is amiss and have the
controller take appropriate action, such as move to a design safe state.

This second opinion strategy may be triggered dynamically. A controller on a train
stopped in a metro station may be able to a two second delay required for a reset
and retry. A controller on the same train approaching a station at 50 km/h may not.
The decision to request a second opinion could therefore be triggered by the train’s
speed, as well as other factors, such as its location and the weather (which might
affect stopping distance).

ECC
ECC, including Chipkill (repair up to 4 bits), can be used to handle soft memory
errors. In many cases a SECDED algorithm on the memory can provide the
necessary level of resilience in the system. Chipkill memory would provide even
more resilience, as it would handle many memory errors before they were noticed
by the software. This memory is costlier, but its cost may be acceptable on low-
volume products, such as LRT systems (compared to automobiles) and worth the
decreased risk of memory errors.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 13

Board replacement
Based on evidence such as that in the Google study cited earlier, there appears to
be a correlation between soft memory errors now and hard memory errors showing
up in the future. We may be able to improve dependability by logging errors and
replacing those boards where soft errors are most frequent, by replacing boards
more frequently, say every 20 months instead of waiting five years.

What did we miss?
Our focus on soft memory errors was legitimate, considering the change in context
where our system is to be deployed and what we know about neutron flux at
altitude. However, now that we have examined this problem, we should also
consider what we might have missed by focusing on solutions to soft memory errors
caused by cosmic radiation.

For example, is our system susceptible to soft memory errors caused by electro-
magnetic interference from, say, mobile phones or other radios or power sources?
Are the physical location of the system and cabin design such that no source of
radiation can be placed close to the system and inadvertently interfere with its
correct functioning? Has the change in altitude and the correspondingly thinner
atmosphere significantly changed our hardware’s cooling requirements?

Since our ATO system has already been in use in another environment, we can
probably assume that we have designed the system with the understanding that
components and the system itself may indeed fail. That is, we have designed our
system to:

• isolate safety-critical components from other components and each other, as
required by the relevant safety standards

• detect errors while the system is running and correct them

• detect failures and contain them, or perform controlled shutdowns and
restarts, or move to a design safe state as required and possible

Finally, we need to ask if the solutions we propose decrease or increase the risk of
a failure, both of the specific system we are designing (in our case the in-cab
controller for the ATO system), and of the larger system in which it will be
implemented. Even if, for example, false positives causing a decline in availability
do not significantly compromise the dependability of the controller, what are the
consequences for the entire LRT system? If moving to a design safe state and even
stopping the LRT train is acceptable, how does this solution affect the rest of the
system? How does having an unplanned stop of one train increase the stress on
other elements in the system?

To make our bicycle paradigm more accurately describe the questions we face with
our ATO controller, we need to adjust it somewhat. We need to consider, not just
one bicycle, but many bicycles packed together in a race. A solitary bicycle may be
able to get away with suddenly slowing down while its controller resets, but a
bicycle that does this in a race is a danger to the other bicycles. It may put them in
a situation they cannot handle, and send them all crashing into the pavement.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 14

Notes
1 Eastland Memorial Society web site. <www.eastlandmemorial.org/eastland7.shtml>
2 Office of Air Accidents Investigation, Aircraft Accident Report No. 79-139, Air New

Zealand McDonnell-Douglas DC10-30 ZK-NZP,Ross Island, Antarctica, 28 November
1979, Wellington, 12 June 1980. para. 1.17.7.
< www.nzalpa.org.nz/Portals/4/Documents/Reports/Chippindale/79-139_section1.pdf>

3 P.T. Mahon, Report of the Royal Commission to inquire into The Crash on Mount
Erebus, Antarctica of a DC10 Aircraft operated by Air New Zealand Limited, Wellington,
pp. 157-59.
<archives.govt.nz/exhibitions/currentexhibitions/chch/downloads/AntarcticReport.pdf>

4 See, for example, Ray Heald, How Cosmic Rays Cause Computer Downtime (IEEE Rel.
Soc. SCV Meeting: 3/23/05) who states that “Cosmic events are the dominate cause of
soft errors in ICs manufactured with very low alpha materials”, p. 22, and “Neutrons are
the primary problem”, p. 23. See also Tom Simonite, “Should every computer chip have
a cosmic ray detector?” New Scientist Technology Blog. 7 March 2008.
<www.newscientist.com/blog/technology/2008/03/do-we-need-cosmic-ray-alerts-
for.html>

5 Seutest describes itself as “a cooperatively managed website providing links and support
for soft-error testing compatible with the JEDEC standard JESD89 – ‘Measurement and
Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in
Semiconductor Devices’”. Solar modulation: 50% for both locations.

6 We have deliberately used an extreme case. However, the effect of altitude is also
significant in, say, Denver Colorado, which is often used (in the U.S. at least) to illustrate
these types of scenarios. Of course, systems in aircraft are even more vulnerable; for
example, at 10,000 metres (well below the service ceiling of many airliners) above
Rome, the relative neutron flux is 147.36! “Understanding Soft and Firm Errors in
Semiconductor Devices”, an FAQ published by Actel Corporation notes that “In a
commercial airplane, the effect [of neutrons] can be 100-800 times worse than at sea-
level”, 2002, p. 1.

7 A Heisenbug is an irreproducible failure that is unlikely to occur on both subsystems
simultaneously. A Bohrbug is a solid, reproducible bug that would arise on both systems.

8 Bianca Schroeder, Eduardo Pinheiro and Wolf-Dietrich Weber, “DRAM Errors in the
Wild: A Large-Scale Field Study”, Seattle: SIGMETRICS/Performance ’09, June 15-19,
2009.

9 A FIT is one failure per 109 hours.
10 Schoeder et al., p. 6
11 Tezzaron Semiconductor, “Soft Errors in Electronic Memory—A White Paper”, 2004.

<www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf>
12 This is the problem of silent evidence. We can say that we have found no evidence of

bugs in the system, but we cannot say that we have found evidence of no bugs.
13 We can make this program available on request, but it is a very simple program. It could

be argued that, given the simplicity of the assumptions, in particular the negative
exponential distributions, a simulation is overkill. We assumed, though, that the program
might need to be extended in the future.

14 The traffic light that is always red is only always safe if we assume that drivers will always
obey the light. In practice drivers will eventually lose patience (the timing dependent on
individual personality and local driving culture) and risk crossing the intersection.

15 Assuming 8 Kbytes are tested every 330 milliseconds.
16 Whether detection after the system has operated incorrectly for several hours would

actually be useful is a question that needs to be considered at the system level.
17 Moving the controller unnecessarily to its design safe state is also a reliability problem:

the decision mechanism gave the wrong answer.

The Dangers of Over-engineering a Safe System

QNX Software Systems Limited 15

18 Terry Hardy, “Grounding of the Ship Queen of Oak Bay”, Journal of Safety, Sept-Oct.,

2012, p. 7.

About QNX Software Systems
QNX Software Systems Limited, a subsidiary of BlackBerry, is a leading vendor of operating
systems, development tools, and professional services for connected embedded systems.
Global leaders such as Audi, Cisco, General Electric, Lockheed Martin, and Siemens depend
on QNX technology for vehicle infotainment units, network routers, medical devices,
industrial automation systems, security and defense systems, and other mission- or life-
critical applications. Founded in 1980, QNX Software Systems Limited is headquartered in
Ottawa, Canada; its products are distributed in more than 100 countries worldwide. Visit
www.qnx.com and facebook.com/QNXSoftwareSystems, and follow @QNX_News on Twitter.
For more information on the company's automotive work, visit qnxauto.blogspot.com and
follow @QNX_Auto.

www.qnx.com
© 2013 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, Aviage are
trademarks of QNX Software Systems Limited, which are registered trademarks and/or used
in certain jurisdictions. All other trademarks belong to their respective owners.
302238 MC411.121

