
5 CRITERIA TO CONSIDER WHEN CHOOSING
AN OS FOR YOUR MEDICAL DEVICE

WHITEPAPER

CONTENTS

SAFETY CERTIFICATION

CODE TRACEABILITY AND SOUP

OS ARCHITECTURES

COST AND TIME-TO-MARKET

SUPPORT AND LICENSING

DON’T RUSH AN OS DECISION
WITHOUT ALL THE FACTS

Medical device designers have become increasingly interested

in the Linux® operating system (OS), primarily because of its

open-source model. Linux lets the designer take advantage of

a large pool of developers, a rich legacy of source code and

industry-standard POSIX APIs. But while Linux may work well for

many applications and rapid prototyping, it may be preferable

to choose a commercial operating system, particularly for

safety-critical medical devices such as those used for infusion

delivery, heart monitoring and resuscitation and robotic surgery.

Developers of safety-critical medical devices should consider

these five issues when deciding whether Linux is the best option

for their OS.

1. SAFETY CERTIFICATION

Regulatory requirements are driving the demand for

software that is compliant with the IEC 62304 standard for

“Medical device software – Software life cycle processes.”

This standard requires that manufacturers follow good

development practices to produce high-quality software

for medical applications. And it has been endorsed under

medical device-related directives by the FDA in the U.S.

While certified systems can be designed based on an

open-source OS, the development efforts can be

considerably more complex, expensive and time-consuming

than when using an OS designed specifically for medical

devices. Even minor patches or software updates to an

open-source OS can result in a significant ripple effect of

rebuilds and changes that can require expensive retest and

recertification efforts. The Linux Foundation estimates

that the development community has been merging

patches at an average rate of 7.71 patches per hour since

the 3.10 kernel release in October 2011. Keeping up with

this rate of change for accepting or rejecting patches,

validating ripples through effects of changes (such as

addressing dead code) and testing is a monumental task.

Using an OS pre-certified by an independent third-party

auditing body such as TÜV Rheinland® can significantly

reduce certification efforts for medical device

manufacturers.

Figure 1:

Using a pre-certified RTOS helps reduce scope of certification

BLACKBERRY 3

NON-SAFETY-CRITICAL

REDUCE SCOPE
FOR CERTIFICATION

FILE
SYSTEMS

62304 COMPLIANT
RTOS

PROCESS
MANAGER

HMI APPLICATION

NETWORKING DRIVER

EXCLUDED FROM
CERTICIATION

SAFETY-CRITICAL

PRE-CERTIFIED

MICROKERNEL
ARM, X86

2. CODE TRACEABILITY
AND SOUP

The IEC 62304 standard cautions developers of

software for medical devices about using third-

party software, particularly “software of unknown

provenance” (SOUP). The standard spells out a

risk-based decision model for determining

when SOUP is acceptable and defines testing

requirements for SOUP to support rationale for

using it.

Certification to IEC 62304 requires traceability of

patch sets and code and ensures that specified

development processes are strictly followed.

But Linux encourages broad contributions and

changes to the source base, with no requirements

for standards-based development processes,

making it literally “of unknown provenance.” And

while the Linux source code is open to scrutiny, the

sheer number of developers (more than 12,000)

contributing to it makes it virtually impossible

to trace everything in the code to meet the

standard’s stringent risk analysis requirements for

certification.

In short, if certification will be required for the final

medical device, the ability to trace the source code

is an important consideration.

BLACKBERRY

Figure 2:

Example of a monolithic OS architecture

BLACKBERRY 5

3. OS ARCHITECTURES

Selecting an OS is one of the most critical decisions a

manufacturer makes, and the two main kernel architectures

to choose between are monolithic and microkernel. A

monolithic kernel runs all operating system components

in kernel space, including device drivers, file management,

communications, networking and graphics stacks. As

a result, a single programming error in any of these

components can crash the OS. In addition, any change to

one of these components implies an OS modification and

recompilation. For example, if a provided Linux driver isn’t

suitable for the medical device, developers must write and

maintain custom drivers, which requires valuable developer

time and increases development costs.

Figure 2 shows a hypothetical medical monitoring

device built on a monolithic OS. The drivers, file systems,

communications stack, etc., must all be included in the risk

analysis because they impact and can corrupt the kernel.

A microkernel OS such as the QNX® Neutrino® RTOS and

its safety variant, the QNX® OS for Safety, can also deliver a

full range of OS services required for medical applications.

These include networking services that support complex

distributed systems in which multiple devices seamlessly

share resources and communicate without custom

protocols. The OS also supports a wide range of block and

flash file system formats and a power-safe disk file system

for data integrity and reliable storage. For applications with

a user interface, the screen framework enables developers

to build graphically rich, compelling user interfaces using

built-in, high-performance, OpenGL ES-based transitions.

Additional third-party user interface technology, such

as Qt or Crank, seamlessly integrates with the screen

framework. Figure 3 shows the QNX Neutrino RTOS

microkernel architecture, which provides extensive fault

containment and recovery as every driver, protocol stack,

file system and application runs outside the kernel in the

safety of memory-protected user space.

MEMORY PROTECTED

KERNEL

Diagnostic
display

Patient data
aggregator

Patient alarm
control

Patient data
logger

Filesystem Communications
Stack/drivers

Peripheral bus
drivers

Graphics
driver

Solid state
disk

Wireless ECG/
network

SpO2/blood
pressure
monitors

LCD

MEMORY PROTECTED

MESSAGE PASSING BUS

MICROKERNEL

Diagnostic
display

Patient data
aggregator

Patient alarm
control

Patient data
logger

Filesystem Communications
Stack/drivers

Peripheral bus
drivers

Graphics
driver

Solid state
disk

Wireless ECG/
network

SpO2/blood
pressure
monitors

LCD

Figure 3:

Example of a microkernel OS architecture

BLACKBERRY 6

4. COST AND TIME-TO-MARKET

Linux is often considered a free operating system because

it provides open access to its source code. The total cost

of ownership must be considered, however, using an open-

source OS may incur extra costs for development time and

testing to certify the system. This additional development

time can result in lost revenue due to delays in bringing

the device to market. Most medical device developers

want to focus their efforts on their proprietary, value-added

applications, but an open-source OS may require additional

investment to sustain an in-house team of OS experts to

configure, build, support, certify, test and maintain a large

codebase that is the foundation of the product.

The QNX OS for Safety is a fully-featured RTOS that

dramatically simplifies the migration from a Linux-based

prototype to a production system. Its POSIX compliance

ensures Linux API compatibility, increasing code re-use

and eliminating the learning curve that often comes with

adopting a commercial RTOS. As a result, it helps reduce

program cost and risk and shortens the time-to-market for

medical device developers.

Engineer
Months

Risk Analysis

Produce functional and performance requirements

Specification of validation requirements

Validation of functional and performance requirements

Identify unnecessary components

Remove unnecessary components

Identify safety aspects of Linux

The activities required for the initial deployment of a Linux-based system in a device requiring safety certification or pre-market safety approval.

Figure 4:

BLACKBERRY 7

5. SUPPORT AND LICENSING

The community development model of open-source

software can make it difficult for developers to get the

help they need when they need it. With demanding time-

to-market expectations for medical devices, waiting for

an OS issue to be resolved can have a massive impact

on a project’s success. And if the solution is an upgrade

or patch, that introduces additional complexities and the

possibility of more support issues. In addition, it’s up to the

application developer to ensure that the correct licenses

are used and have been appropriately attributed to avoid

contamination of a proprietary source base.

BlackBerry® QNX® products include a licensing support

system that helps ensure the provenance of all source

code. And BlackBerry QNX offers a range of additional

support services, including customized courses tailored

to distinct project needs, technical requirements and

project-specific challenges. To complement the QNX

OS for Safety, BlackBerry QNX also provides training,

architectural reviews and custom engineering services.

Our expertise in designing safety-certified embedded

systems enables us to guide developers through the safety

certification process to help them meet important product

launch dates.

DON’T RUSH AN OS DECISION
WITHOUT ALL THE FACT

Not every medical device application requires a safety-

certified operating system. Linux can be an appropriate

option for many of those applications, as can the QNX

Neutrino RTOS. But for life- or safety-critical embedded

systems that must operate without failure, the QNX OS for

Safety is a proven, reliable choice.

©2021 BlackBerry Limited. Trademarks, including but not limited to BLACKBERRY, EMBLEM Design and QNX are the
trademarks or registered trademarks of BlackBerry Limited, and the exclusive rights to such trademarks are expressly

reserved. All other trademarks are the property of their respective owners.

About BlackBerry QNX: BlackBerry® QNX® is a trusted supplier of safe and secure operating
systems, hypervisors, frameworks and development tools, and provides expert support and
services for building the world’s most critical embedded systems. The company’s
technology is trusted in more than 215 million vehicles and is deployed in embedded
systems around the world, across a range of industries including automotive, medical
devices, industrial controls, transportation, heavy machinery and robotics. Founded
in 1980, BlackBerry QNX is headquartered in Ottawa, Canada and was acquired by
BlackBerry in 2010.

BlackBerry QNX software and development tools are standards-based and enable
companies to adopt a scalable software platform strategy across product lines and
business units. The BlackBerry QNX software portfolio, including safety pre-certified
products, is purpose-built for embedded systems and scales from single-purpose devices
to highly complex systems of mixed criticality. Because we are successful only when you
are, you can rely on our support and professional services teams to provide the expertise
you need, when you need it—throughout the entire product development life cycle.

https://www.youtube.com/user/QNXcam
https://www.linkedin.com/company/blackberryqnx
https://www.facebook.com/BlackBerryQNX/
https://twitter.com/QNX_News/

